Solveeit Logo

Question

Question: Derive an expression for the electric field at the centre. ![](https://www.vedantu.com/question-s...

Derive an expression for the electric field at the centre.

Explanation

Solution

You could firstly consider an arbitrary element from the given quarter circle and then find the electric field due to that small element. On resolving the electric field thus found we understand that we have such components in every one of the small elements in that quarter circle. You could find the net electric components by integrating using appropriate limits for x and y directions and then find their resultant to get the answer.
Formula used:
Electric field,
dE=kdqR\overrightarrow{dE}=k\dfrac{dq}{R}

Complete answer:
In the question we are given a quarter circle of uniform charge density and are asked to find the net electric field at its centre. We could consider a small element dl that subtends a small angle dθd\theta at the centre.

Linear charge density λ\lambda could be given by,
λ=dqdl\lambda =\dfrac{dq}{dl}
dq=λdl\Rightarrow dq=\lambda dl ………………………………. (1)
We also have,
dθ=dlRd\theta =\dfrac{dl}{R}
dl=Rdθ\Rightarrow dl=Rd\theta ………………………………. (2)
Substituting (2) in (1) we get,
dq=λRdθdq=\lambda Rd\theta ………………………………….. (3)
Now the electric field due to this small element under consideration could be given by,
dE=kdqR\overrightarrow{dE}=k\dfrac{dq}{R}
Substituting (3),
dE=kλRdθR2=kλRdθ\overrightarrow{dE}=\dfrac{k\lambda Rd\theta }{{{R}^{2}}}=\dfrac{k\lambda }{R}d\theta ……………………………….. (4)
We could resolve dE\overrightarrow{dE} into its components dEcosθdE\cos \theta and dEsinθdE\sin \theta
For every small element of the quarter circle will have these components and we have to find the resultant of all these components. Is Ex=dEcosθ{{E}_{x}}=\int{dE\cos \theta } and Ey=dEsinθ{{E}_{y}}=\int{dE\sin \theta } are the net electric field along x and y directions respectively, then the net electric field due to the given quarter circle would be,
Enet=Ex2+Ey2{{\overrightarrow{E}}_{net}}=\sqrt{{{E}_{x}}^{2}+{{E}_{y}}^{2}} ……………………………………………… (5)
Now,
Ex=dEcosθ{{E}_{x}}=\int{dE\cos \theta }
From (4),
Ex=0π2kλRdθcosθ=kλR0π2cosθdθ\Rightarrow {{E}_{x}}=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{k\lambda }{R}}d\theta \cos \theta =\dfrac{k\lambda }{R}\int\limits_{0}^{\dfrac{\pi }{2}}{\cos \theta d\theta }
Ex=kλR[sinθ]0π2=kλR[10]\Rightarrow {{E}_{x}}=\dfrac{k\lambda }{R}\left[ \sin \theta \right]_{0}^{\dfrac{\pi }{2}}=\dfrac{k\lambda }{R}\left[ 1-0 \right]
Ex=kλR\Rightarrow {{E}_{x}}=\dfrac{k\lambda }{R} …………………………………………… (6)
And,
Ey=dEsinθ{{E}_{y}}=\int{dE\sin \theta }
Ey=0π2kλRdθsinθ=kλR0π2sinθdθ\Rightarrow {{E}_{y}}=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{k\lambda }{R}}d\theta \sin \theta =\dfrac{k\lambda }{R}\int\limits_{0}^{\dfrac{\pi }{2}}{\sin \theta d\theta }
Ey=kλR[cosθ]0π2=kλR[0(1)]\Rightarrow {{E}_{y}}=\dfrac{k\lambda }{R}\left[ -\cos \theta \right]_{0}^{\dfrac{\pi }{2}}=\dfrac{k\lambda }{R}\left[ 0-\left( -1 \right) \right]
Ey=kλR\Rightarrow {{E}_{y}}=\dfrac{k\lambda }{R} …………………………………………… (7)
From (6) and (7),
Ex=Ey=E=kλR{{E}_{x}}={{E}_{y}}=E=\dfrac{k\lambda }{R}
Equation (5) now becomes,
Enet=Ex2+Ey2{{\overrightarrow{E}}_{net}}=\sqrt{{{E}_{x}}^{2}+{{E}_{y}}^{2}}
Enet=2E2=2E\Rightarrow {{\overrightarrow{E}}_{net}}=\sqrt{2{{E}^{2}}}=\sqrt{2}E
Enet=2kλR\therefore {{\overrightarrow{E}}_{net}}=\sqrt{2}\dfrac{k\lambda }{R}
Therefore, we found the electric field at the centre of the quarter circle to be,
Enet=2kλR{{\overrightarrow{E}}_{net}}=\sqrt{2}\dfrac{k\lambda }{R}

Note:
You may have noticed the constant that is being used throughout the solution ‘k’. This constant can ‘k’ can be given by,
k=14πε0=9×109k=\dfrac{1}{4\pi {{\varepsilon }_{0}}}=9\times {{10}^{9}}
Now, we applied limits for the integral from 0 to π2\dfrac{\pi }{2} as we are performing integration for dθd\theta and we have applied the limits appropriately for a quarter circle.