Solveeit Logo

Question

Question: Derivatives of sin square x...

Derivatives of sin square x

Answer

2sin x cos x or sin(2x)

Explanation

Solution

To find the derivative of sin2x\sin^2 x, we use the chain rule.

Let y=sin2xy = \sin^2 x.
This can be rewritten as y=(sinx)2y = (\sin x)^2.

We apply the chain rule, which states that if y=f(u)y = f(u) and u=g(x)u = g(x), then dydx=dydududx\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}.

  1. Identify the outer function and the inner function:
    Let u=sinxu = \sin x (inner function).
    Then y=u2y = u^2 (outer function).

  2. Differentiate the outer function with respect to uu:
    dydu=ddu(u2)=2u\frac{dy}{du} = \frac{d}{du}(u^2) = 2u.

  3. Differentiate the inner function with respect to xx:
    dudx=ddx(sinx)=cosx\frac{du}{dx} = \frac{d}{dx}(\sin x) = \cos x.

  4. Apply the chain rule:
    dydx=dydududx\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}
    Substitute the expressions from steps 2 and 3:
    dydx=(2u)(cosx)\frac{dy}{dx} = (2u) \cdot (\cos x)

  5. Substitute back u=sinxu = \sin x:
    dydx=2(sinx)(cosx)\frac{dy}{dx} = 2(\sin x)(\cos x)

This result can also be expressed using the trigonometric identity sin(2x)=2sinxcosx\sin(2x) = 2\sin x \cos x.
Therefore, dydx=sin(2x)\frac{dy}{dx} = \sin(2x).