Question
Question: Derivatives of sin square x...
Derivatives of sin square x
2sin x cos x or sin(2x)
Solution
To find the derivative of sin2x, we use the chain rule.
Let y=sin2x.
This can be rewritten as y=(sinx)2.
We apply the chain rule, which states that if y=f(u) and u=g(x), then dxdy=dudy⋅dxdu.
-
Identify the outer function and the inner function:
Let u=sinx (inner function).
Then y=u2 (outer function). -
Differentiate the outer function with respect to u:
dudy=dud(u2)=2u. -
Differentiate the inner function with respect to x:
dxdu=dxd(sinx)=cosx. -
Apply the chain rule:
dxdy=dudy⋅dxdu
Substitute the expressions from steps 2 and 3:
dxdy=(2u)⋅(cosx) -
Substitute back u=sinx:
dxdy=2(sinx)(cosx)
This result can also be expressed using the trigonometric identity sin(2x)=2sinxcosx.
Therefore, dxdy=sin(2x).