Solveeit Logo

Question

Question: Derivative of \({(x\cos x)^x}\) with respect to \(x\) is A.\({(x\cos x)^x}\) \([(\log x + 1) - \\...

Derivative of (xcosx)x{(x\cos x)^x} with respect to xx is
A.(xcosx)x{(x\cos x)^x} [(logx+1)logcosx+xcosx(sinx)][(\log x + 1) - \\{ \log \cos x + \dfrac{x}{{\cos x}}(\sin x)\\} ]
B.(xcosx)x{(x\cos x)^x} [(logx+1)+logcosx+xcosx(sinx)][(\log x + 1) + \\{ \log \cos x + \dfrac{x}{{\cos x}}( - \sin x)\\} ]
C.(xcosx)x{(x\cos x)^x} [(logx+1)+logsinx+xcosx(cosx)][(\log x + 1) + \\{ \log \sin x + \dfrac{x}{{\cos x}}(\cos x)\\} ]
D.None of these

Explanation

Solution

- The derivative of a function of a real variable measures the sensitivity to change of the function value with respect to a change in its argument. Derivatives are a fundamental tool of calculus.
To solve this problem, we have to differentiate functions of the form y=f(x)=[u(x)]v(x)y = f(x) = {[u(x)]^{v(x)}} and take the logarithm of both sides to get log(y)=v(x)logu(x)\log (y) = v(x)\log u(x). Further there are detailed explanations of each step.

Complete step-by-step answer:
Step1 Let y=(xcosx)xy = {(x\cos x)^x}
Take the logarithm of both sides
logy=log(xcosx)x\log y = \log {(x\cos x)^x}
Using property of log;
logy=xlog(xcosx)\log y = x\log (x\cos x)
Differentiating both sides with respect to x, we get
1ydydx=xddxlog(xcosx)+log(xcosx)ddx(x)\dfrac{1}{y}\dfrac{{dy}}{{dx}} = x\dfrac{d}{{dx}}\\{ \log (x\cos x)\\} + \log (x\cos x)\dfrac{d}{{dx}}(x)
Step 2
1ydydx=x×1xcosxx(sinx)+cosx.1+log(xcosx).1 1ydydx=1cosxx(sinx)+cosx+log(xcosx) 1ydydx=x(sinx)cosx+cosxcosx+log(xcosx)  \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = x \times \dfrac{1}{{x\cos x}}\\{ x( - \sin x) + \cos x.1\\} + \log (x\cos x).1 \\\ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{1}{{\cos x}}\\{ x( - \sin x) + \cos x\\} + \log (x\cos x) \\\ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{{x( - \sin x)}}{{\cos x}} + \dfrac{{\cos x}}{{\cos x}} + \log (x\cos x) \\\
Cancelling cosx with cosx, we get,
\Rightarrow 1ydydx=x(sinx)cosx+1+logx+logcosx\dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{{x( - \sin x)}}{{\cos x}} + 1 + \log x + \log \cos x
\Rightarrow 1ydydx=(logx+1)+logcosx+xcosx(sinx)\dfrac{1}{y}\dfrac{{dy}}{{dx}} = (\log x + 1) + \\{ \log \cos x + \dfrac{x}{{\cos x}}( - \sin x)\\}
dydx=y[(logx+1)+logcosx+xcosx(sinx) dydx=(xcosx)x[(logx+1)+logcosx+xcosx(sinx)  \Rightarrow \dfrac{{dy}}{{dx}} = y[(\log x + 1) + \\{ \log \cos x + \dfrac{x}{{\cos x}}( - \sin x)\\} \\\ \Rightarrow \dfrac{{dy}}{{dx}} = {(x\cos x)^x}[(\log x + 1) + \\{ \log \cos x + \dfrac{x}{{\cos x}}( - \sin x)\\} \\\
So, B is the correct answer.

Note: Logarithmic differentiation is also useful when we are to differentiate a product or quotient of more than two functions.
Chain rule – It is the process that helps us to find the derivative of a composite function.
If y is a differentiable function of u and u is a differentiable function then dydx=dydududx\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}}\dfrac{{du}}{{dx}}