Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Derivative of the function f(x)=log5(log7x)f(x) = log_5(log_7x), x>7x > 7 is

A

1x(log5)(log7)(log7x)\frac{1}{x\left(log\,5\right)\left(log\,7\right)\left(log_{7}\,x\right)}

B

1x(log5)(log7)\frac{1}{x\left(log\,5\right)\left(log\,7\right)}

C

1x(logx)\frac{1}{x\left(log\,x\right)}

D

None of these

Answer

1x(log5)(log7)(log7x)\frac{1}{x\left(log\,5\right)\left(log\,7\right)\left(log_{7}\,x\right)}

Explanation

Solution

f(x)=log5(log7x)=log5(logexloge7)f \left(x\right)=log_{5}\left(log_{7}x\right)=log_{5}\left(\frac{log_{e}\,x}{log_{e}\,7}\right) =log5(logex)log5(loge7)=log_{5}\left(log_{e}\,x\right)-log_{5}\left(log_{e}7\right) =loge(logex)loge5log5(loge)7=\frac{log_{e}\left(log_{e}\,x\right)}{log_{e}\,5}-log_{5}\left(log_{e}\right)\,7 Differentiating ww.rr.tt. xx, we get f(x)=1logex1x1loge5f '\left(x\right)=\frac{1}{log_{e}\,x}\cdot\frac{1}{x}\cdot\frac{1}{log_{e}\,5} =1xlogexloge7loge7loge5=\frac{1}{\frac{x\,log_{e}\,x}{log_{e}\,7}log_{e}\,7\cdot log_{e}\,5} =1xlog7xlog7log5=\frac{1}{x\,log_{7}\,x\cdot log\,7\cdot log\,5}