Solveeit Logo

Question

Question: derivative of sin inverse x by first principle...

derivative of sin inverse x by first principle

Answer

11x2\frac{1}{\sqrt{1-x^2}}

Explanation

Solution

To find the derivative of f(x)=sin1xf(x) = \sin^{-1}x using the first principle, we use the definition: f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} Substitute f(x)=sin1xf(x) = \sin^{-1}x: f(x)=limh0sin1(x+h)sin1xhf'(x) = \lim_{h \to 0} \frac{\sin^{-1}(x+h) - \sin^{-1}x}{h} Let y=sin1xy = \sin^{-1}x and y+k=sin1(x+h)y+k = \sin^{-1}(x+h).

From these substitutions, we have: x=sinyx = \sin y x+h=sin(y+k)x+h = \sin(y+k)

Subtracting the first equation from the second gives: h=sin(y+k)sinyh = \sin(y+k) - \sin y

Also, as h0h \to 0, x+hxx+h \to x. Since sin1x\sin^{-1}x is a continuous function, sin1(x+h)sin1x\sin^{-1}(x+h) \to \sin^{-1}x, which means y+kyy+k \to y. Therefore, as h0h \to 0, k0k \to 0.

Now, substitute these expressions back into the limit: f(x)=limk0(y+k)ysin(y+k)sinyf'(x) = \lim_{k \to 0} \frac{(y+k) - y}{\sin(y+k) - \sin y} f(x)=limk0ksin(y+k)sinyf'(x) = \lim_{k \to 0} \frac{k}{\sin(y+k) - \sin y}

Use the trigonometric identity sinAsinB=2cos(A+B2)sin(AB2)\sin A - \sin B = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right). Here, A=y+kA = y+k and B=yB = y. So, sin(y+k)siny=2cos(y+k2)sin(k2)\sin(y+k) - \sin y = 2 \cos\left(y+\frac{k}{2}\right) \sin\left(\frac{k}{2}\right) =2cos(y+k2)sin(k2)= 2 \cos\left(y+\frac{k}{2}\right) \sin\left(\frac{k}{2}\right)

Substitute this back into the limit expression: f(x)=limk0k2cos(y+k2)sin(k2)f'(x) = \lim_{k \to 0} \frac{k}{2 \cos\left(y+\frac{k}{2}\right) \sin\left(\frac{k}{2}\right)}

Rearrange the terms to use the standard limit limθ0sinθθ=1\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1: f(x)=limk012cos(y+k2)ksin(k2)f'(x) = \lim_{k \to 0} \frac{1}{2 \cos\left(y+\frac{k}{2}\right)} \cdot \frac{k}{\sin\left(\frac{k}{2}\right)} As k0k \to 0:

The first part of the product becomes: limk012cos(y+k2)=12cosy\lim_{k \to 0} \frac{1}{2 \cos\left(y+\frac{k}{2}\right)} = \frac{1}{2 \cos y} The second part of the product becomes: limk0ksin(k2)=limk02(k/2)sin(k/2)\lim_{k \to 0} \frac{k}{\sin\left(\frac{k}{2}\right)} = \lim_{k \to 0} \frac{2 \cdot (k/2)}{\sin(k/2)}

Let θ=k/2\theta = k/2. As k0k \to 0, θ0\theta \to 0. So, limθ02θsinθ=2limθ0θsinθ=21=2\lim_{\theta \to 0} \frac{2\theta}{\sin\theta} = 2 \lim_{\theta \to 0} \frac{\theta}{\sin\theta} = 2 \cdot 1 = 2.

Combine these results: f(x)=12cosy2=1cosyf'(x) = \frac{1}{2 \cos y} \cdot 2 = \frac{1}{\cos y}

Now, we need to express cosy\cos y in terms of xx. We know that y=sin1xy = \sin^{-1}x, which implies siny=x\sin y = x. Using the identity sin2y+cos2y=1\sin^2 y + \cos^2 y = 1, we get: cos2y=1sin2y\cos^2 y = 1 - \sin^2 y cos2y=1x2\cos^2 y = 1 - x^2 cosy=±1x2\cos y = \pm \sqrt{1 - x^2}

The principal value branch of sin1x\sin^{-1}x is [π2,π2][-\frac{\pi}{2}, \frac{\pi}{2}]. In this interval, cosy\cos y is non-negative. Therefore, cosy=1x2\cos y = \sqrt{1 - x^2}.

Substitute this back into the expression for f(x)f'(x): f(x)=11x2f'(x) = \frac{1}{\sqrt{1 - x^2}}

The derivative exists for x(1,1)x \in (-1, 1).