Solveeit Logo

Question

Mathematics Question on limits and derivatives

Derivative of sec1(12x2+1)\sec^{-1} \left( \frac{1}{2x^2 + 1 } \right) w.r.t. 1+3x\sqrt{ 1 + 3x} at x=13x = - \frac{1}{3} is

A

0

B

12\frac{1}{2}

C

13\frac{1}{3}

D

16\frac{1}{6}

Answer

0

Explanation

Solution

Let y=sec1(12x2+1)y = \sec^{-1} \left(\frac{1}{2x^{2}+1}\right) and z=1+3xz=\sqrt{1+3x} dydz=dy/dxdz/dz \therefore \frac{dy}{dz} = \frac{dy/dx}{dz/dz} =(2x2+1).1(12x2+1)21 = \left(2x^{2} +1\right) . \frac{1}{\sqrt{\left(\frac{1}{2x^{2} +1}\right)^{2} -1} } .4x(2x2+1)2/12(1+3x)1/2.3 . \frac{-4x}{ \left(2x^{2}+1\right)^{2}} / \frac{1}{2} \left(1+3x\right)^{-1/2}.3 =4x1(2x2+1)2.2313x = \frac{-4x}{\sqrt{1-\left(2x^{2}+1\right)^{2}}} . \frac{2}{3} \sqrt{1-3x} At x=13,dydz=0x = \frac{1}{3}, \frac{dy}{dz} = 0