Solveeit Logo

Question

Question: Derivative of \({\log _{10}}x\) with respect to \({x^2}\) is; \(\left( 1 \right)2{x^2}{\log _e}10\...

Derivative of log10x{\log _{10}}x with respect to x2{x^2} is;
(1)2x2loge10\left( 1 \right)2{x^2}{\log _e}10
(2)log10e2x2\left( 2 \right){\log _{10}}\dfrac{e}{{2{x^2}}}
(3)loge102x2\left( 3 \right){\log _e}\dfrac{{10}}{{2{x^2}}}
(4)x2loge10\left( 4 \right){x^2}{\log _e}10

Explanation

Solution

This question demands the knowledge of the concept of differentiation of one function with respect to another function. Let the two functions are f(x) and g(x)f\left( x \right){\text{ and g}}\left( x \right) respectively and according to the concept we have to calculate the value of df(x)dg(x)\dfrac{{df\left( x \right)}}{{dg\left( x \right)}} , which can also be written as [df(x)dxdg(x)dx]\left[ {\dfrac{{\dfrac{{df\left( x \right)}}{{dx}}}}{{\dfrac{{dg\left( x \right)}}{{dx}}}}} \right] means ultimately we have to calculate f(x)g(x)\dfrac{{f'\left( x \right)}}{{g'\left( x \right)}} .

Complete step by step answer:
Since the two given functions have to be differentiated individually, therefore;
Let u=log10xu = {\log _{10}}x and v=x2v = {x^2}
Let us calculate the value of dudx and dvdx\dfrac{{du}}{{dx}}{\text{ and }}\dfrac{{dv}}{{dx}};
dudx=ddx(log10x) ......(1)\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {{{\log }_{10}}x} \right){\text{ }}......\left( 1 \right)
By change of base formula of logarithm, we know that;
logab=logeblogea\Rightarrow {\log _a}b = \dfrac{{{{\log }_e}b}}{{{{\log }_e}a}}
Applying this rule in equation (1)\left( 1 \right) , we get;
dudx=ddx(logexloge10)\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{{{{\log }_e}x}}{{{{\log }_e}10}}} \right)
dudx=1loge10×(1x)\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{{{{\log }_e}10}} \times \left( {\dfrac{1}{x}} \right)
We get the value of dudx\dfrac{{du}}{{dx}} , as;
dudx=1loge10(1x) ......(2)\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{{{{\log }_e}10}}\left( {\dfrac{1}{x}} \right){\text{ }}......\left( 2 \right)
Similarly, we will find the value of dvdx\dfrac{{dv}}{{dx}};
dvdx=ddx(x2)\Rightarrow \dfrac{{dv}}{{dx}} = \dfrac{d}{{dx}}\left( {{x^2}} \right)
By the differentiation formula , i.e. xn=nxn1{x^n} = n{x^{n - 1}} , we get;
dvdx=2x ......(3)\Rightarrow \dfrac{{dv}}{{dx}} = 2x{\text{ }}......\left( 3 \right)
From equation (2)\left( 2 \right) and equation (3)\left( 3 \right), we have the values of dudx and dvdx\dfrac{{du}}{{dx}}{\text{ and }}\dfrac{{dv}}{{dx}};
According to the given question we were asked to differentiate log10x{\log _{10}}x with respect to x2{x^2} is;
Therefore, dividing equation equation(2) by equation (3) , we get;{\text{equation}}\left( 2 \right){\text{ by equation }}\left( 3 \right){\text{ , we get;}}
dudxdvdx=1loge10(1x)2x\Rightarrow \dfrac{{\dfrac{{du}}{{dx}}}}{{\dfrac{{dv}}{{dx}}}} = \dfrac{{\dfrac{1}{{{{\log }_e}10}}\left( {\dfrac{1}{x}} \right)}}{{2x}}
On further simplification of the above equation, we get;
dudv=1loge10(1x×12x)\Rightarrow \dfrac{{du}}{{dv}} = \dfrac{1}{{{{\log }_e}10}}\left( {\dfrac{1}{x} \times \dfrac{1}{{2x}}} \right)
dudv=1loge10(1x×12x)\Rightarrow \dfrac{{du}}{{dv}} = \dfrac{1}{{{{\log }_e}10}}\left( {\dfrac{1}{x} \times \dfrac{1}{{2x}}} \right)
Therefore the value of dudv\dfrac{{du}}{{dv}} equals to;
dudv=1loge10(12x2) ......(4)\Rightarrow \dfrac{{du}}{{dv}} = \dfrac{1}{{{{\log }_e}10}}\left( {\dfrac{1}{{2{x^2}}}} \right){\text{ }}......\left( 4 \right)
But according to the options given to us , we will have to further simplify the above equation;
By the logarithmic property, we know that;
logab=1logba\Rightarrow {\log _a}b = \dfrac{1}{{{{\log }_b}a}}
Applying the above property in equation (4)\left( 4 \right), we get;
dudv=11loge10×2x2\Rightarrow \dfrac{{du}}{{dv}} = \dfrac{1}{{\dfrac{1}{{{{\log }_e}10}} \times 2{x^2}}}
Rearranging the above equation, we get;
dudv=log10e2x2\Rightarrow \dfrac{{du}}{{dv}} = \dfrac{{{{\log }_{10}}e}}{{2{x^2}}}
Therefore, the differentiation of log10x{\log _{10}}x with respect to x2{x^2} is; dudv=log10e2x2\dfrac{{du}}{{dv}} = \dfrac{{{{\log }_{10}}e}}{{2{x^2}}}

So, the correct answer is “Option 2”.

Note: The change of base formula of logarithm becomes very important in cases where we have to calculate the answer according to the given options such as in this case. Let see an example for more clarity on this concept; suppose we have to calculate the value of log38{\log _3}8 , we can not calculate it directly using a calculator that is where the change of base formula comes into the picture and it is given as ; logab=logxblogxa \Rightarrow {\log _a}b = \dfrac{{{{\log }_x}b}}{{{{\log }_x}a}} , upon conversion x can represent any basex{\text{ can represent any base}}, but it must be same for both numerator and denominator. Coming back to our example: log38=loge8loge3{\log _3}8 = \dfrac{{{{\log }_e}8}}{{{{\log }_e}3}} , which gives 1.8928 approximately. No matter what base we take we will always get the same answer.