Solveeit Logo

Question

Mathematics Question on Differentiability

Derivative of log10x{{\log }_{10}}\,x with respect to x2{{x}^{2}} is

A

2x2loge102{{x}^{2}}\,{{\log }_{e}}\,10

B

log10e2x2\frac{{{\log }_{10}}\,e}{2{{x}^{2}}}

C

loge102x2\frac{{{\log }_{e}}\,10}{2{{x}^{2}}}

D

x2loge10{{x}^{2}}\,{{\log }_{e}}\,10

Answer

log10e2x2\frac{{{\log }_{10}}\,e}{2{{x}^{2}}}

Explanation

Solution

Let u=log10x=logexloge10=log10elogexu={{\log }_{10}}x=\frac{{{\log }_{e}}x}{{{\log }_{e}}10}={{\log }_{10}}\,e\,{{\log }_{e}}x
\therefore dudx=log10ex\frac{du}{dx}=\frac{{{\log }_{10}}\,e}{x}
and v=x2v={{x}^{2}}
\therefore dvdx=2x\frac{dv}{dx}=2x
Now, dudv=log10ex+2x=log10e2x2\frac{du}{dv}=\frac{{{\log }_{10}}e}{x+2x}=\frac{{{\log }_{10}}e}{2{{x}^{2}}}