Solveeit Logo

Question

Question: \[\Delta\text{G = }\Delta\text{H - T}\Delta\text{S and }\Delta\text{G = }\Delta\text{H + T }\left\l...

ΔG = ΔH - TΔS and ΔG = ΔH + T [d(ΔG)dT]Pthen(dEcelldT)is:\Delta\text{G = }\Delta\text{H - T}\Delta\text{S and }\Delta\text{G = }\Delta\text{H + T }\left\lbrack \frac{d(\Delta G)}{dT} \right\rbrack_{P}then\left( \frac{dEcell}{dT} \right)is:

A

ΔSnF- \frac{\Delta S}{nF}

B

nEΔS\frac{nE}{\Delta S}

C

- nFEcell\text{- nF}\text{E}^{\text{cell}}

D

+ nEFcell \text{+ nE}\text{F}_{\text{cell}}\

Answer

ΔSnF- \frac{\Delta S}{nF}

Explanation

Solution

(dEdT)p=ΔSnF\left( \frac{dE}{dT} \right)_{p} = \frac{\Delta S}{nF}