Solveeit Logo

Question

Chemistry Question on Enthalpy change

ΔvapH\Delta_{vap}H^\circ for water is +40.49kJ mol1+40.49 \, \text{kJ mol}^{-1} at 1 bar and 100C100^\circ\text{C}. Change in internal energy for this vaporisation under same condition is .............. kJ mol1^{-1}. (Integer answer)
(Given R = 8.3 J K1^{-1} mol1^{-1})

Answer

The enthalpy of vaporization ΔvapH\Delta_{\text{vap}}H^\circ is related to the internal energy change ΔvapU\Delta_{\text{vap}}U^\circ by the equation:
ΔvapH=ΔvapU+ΔngRT.\Delta_{\text{vap}}H^\circ = \Delta_{\text{vap}}U^\circ + \Delta n_gRT.
For the vaporization of water:
H2O(l)H2O(g),\text{H}_2\text{O}(l) \rightarrow \text{H}_2\text{O}(g),
Δng=1(1 mol of gas is formed).\Delta n_g = 1 \quad (\text{1 mol of gas is formed}).
Substitute the given values:
ΔvapH=40.49kJ/mol,\Delta_{\text{vap}}H^\circ = 40.49 \, \text{kJ/mol},
R=8.3J K1mol1,T=100C=373.15K.R = 8.3 \, \text{J K}^{-1} \text{mol}^{-1}, \quad T = 100^\circ \text{C} = 373.15 \, \text{K}.
Calculate ΔvapU\Delta_{\text{vap}}U^\circ:
ΔvapH=ΔvapU+ΔngRT,\Delta_{\text{vap}}H^\circ = \Delta_{\text{vap}}U^\circ + \Delta n_gRT,
40.49=ΔvapU+1×8.3×373.151000.40.49 = \Delta_{\text{vap}}U^\circ + \frac{1 \times 8.3 \times 373.15}{1000}.
Simplify: 40.49=ΔvapU+3.0971,40.49 = \Delta_{\text{vap}}U^\circ + 3.0971,
ΔvapU=40.493.0971=37.6929kJ/mol.\Delta_{\text{vap}}U^\circ = 40.49 - 3.0971 = 37.6929 \, \text{kJ/mol}.
Thus: ΔvapU38kJ/mol.\Delta_{\text{vap}}U^\circ \approx 38 \, \text{kJ/mol}.

Explanation

Solution

The enthalpy of vaporization ΔvapH\Delta_{\text{vap}}H^\circ is related to the internal energy change ΔvapU\Delta_{\text{vap}}U^\circ by the equation:
ΔvapH=ΔvapU+ΔngRT.\Delta_{\text{vap}}H^\circ = \Delta_{\text{vap}}U^\circ + \Delta n_gRT.
For the vaporization of water:
H2O(l)H2O(g),\text{H}_2\text{O}(l) \rightarrow \text{H}_2\text{O}(g),
Δng=1(1 mol of gas is formed).\Delta n_g = 1 \quad (\text{1 mol of gas is formed}).
Substitute the given values:
ΔvapH=40.49kJ/mol,\Delta_{\text{vap}}H^\circ = 40.49 \, \text{kJ/mol},
R=8.3J K1mol1,T=100C=373.15K.R = 8.3 \, \text{J K}^{-1} \text{mol}^{-1}, \quad T = 100^\circ \text{C} = 373.15 \, \text{K}.
Calculate ΔvapU\Delta_{\text{vap}}U^\circ:
ΔvapH=ΔvapU+ΔngRT,\Delta_{\text{vap}}H^\circ = \Delta_{\text{vap}}U^\circ + \Delta n_gRT,
40.49=ΔvapU+1×8.3×373.151000.40.49 = \Delta_{\text{vap}}U^\circ + \frac{1 \times 8.3 \times 373.15}{1000}.
Simplify: 40.49=ΔvapU+3.0971,40.49 = \Delta_{\text{vap}}U^\circ + 3.0971,
ΔvapU=40.493.0971=37.6929kJ/mol.\Delta_{\text{vap}}U^\circ = 40.49 - 3.0971 = 37.6929 \, \text{kJ/mol}.
Thus: ΔvapU38kJ/mol.\Delta_{\text{vap}}U^\circ \approx 38 \, \text{kJ/mol}.