Question
Question: \(\Delta = \left| \begin{matrix} a & a + b & a + b + c \\ 3a & 4a + 3b & 5a + 4b + 3c \\ 6a & 9a + 6...
Δ=a3a6aa+b4a+3b9a+6ba+b+c5a+4b+3c11a+9b+6cwherea=i,b=ω,c=ω2, then Δis equal to.
A
I
B
−ω2
C
ω
D
−i
Answer
I
Explanation
Solution
We first operating R3−2R2 and R2−3R1 in given determinant, then we get =a[a2+ab−2a2−ab]=−a3=i.