Solveeit Logo

Question

Question: \(\Delta = \left| \begin{matrix} a & a + b & a + b + c \\ 3a & 4a + 3b & 5a + 4b + 3c \\ 6a & 9a + 6...

Δ=aa+ba+b+c3a4a+3b5a+4b+3c6a9a+6b11a+9b+6c\Delta = \left| \begin{matrix} a & a + b & a + b + c \\ 3a & 4a + 3b & 5a + 4b + 3c \\ 6a & 9a + 6b & 11a + 9b + 6c \end{matrix} \right|wherea=i,b=ω,c=ω2a = i,b = \omega,c = \omega^{2}, then Δ\Deltais equal to.

A

I

B

ω2- \omega^{2}

C

ω\omega

D

i- i

Answer

I

Explanation

Solution

We first operating R32R2R_{3} - 2R_{2} and R23R1R_{2} - 3R_{1} in given determinant, then we get =a[a2+ab2a2ab]=a3=i= a\lbrack a^{2} + ab - 2a^{2} - ab\rbrack = - a^{3} = i.