Solveeit Logo

Question

Question: $\Delta = \begin{vmatrix} a & a+b & a+b+c \\ 3a & 4a+3b & 5a + 4b+3c \\ 6a & 9a+6b & 11a+9b+6c \end{...

Δ=aa+ba+b+c3a4a+3b5a+4b+3c6a9a+6b11a+9b+6c\Delta = \begin{vmatrix} a & a+b & a+b+c \\ 3a & 4a+3b & 5a + 4b+3c \\ 6a & 9a+6b & 11a+9b+6c \end{vmatrix}

Where a = 1, b = ω\omega, c = ω2\omega^2, then Δ\Delta is equal

Answer

-1

Explanation

Solution

  1. Substitute a=1a=1, b=ωb=\omega, c=ω2c=\omega^2 and use 1+ω+ω2=01+\omega+\omega^2=0.
  2. Perform row operations: R23R1R_2-3R_1 and R36R1R_3-6R_1.
  3. Expand along the first column.
  4. Simplify using ω+ω2=1\omega+\omega^2=-1 to get Δ=1\Delta = -1.