Question
Question: \[\Delta ABC\sim \Delta XYZ\]. The ratio of corresponding sides of the triangles AB : XY = 2 : 3 . I...
ΔABC∼ΔXYZ. The ratio of corresponding sides of the triangles AB : XY = 2 : 3 . If BC = 5 cm. Find the value of YZ.
Solution
Hint: To solve the question, we have to apply the property of similar triangles to calculate the value of YZ.
Complete step-by-step Solution:
ΔABC∼ΔXYZ symbolises that the triangles ABC and XYZ are similar triangles, which implies that the ratio of all the corresponding side of the given triangles is equal.
AB, BC, CA of triangle ABC are corresponding sides of XY, YZ, ZX of triangle XYZ respectively.
⇒XYAB=YZBC=ZXCA
The given value of side BC of triangle ABC is equal to 5 cm.
The given ratio of side AB of triangle ABC to side XY of triangle XYZ is equal to 2 : 3
By substituting the given values in the above expression, we get
32=YZ5=ZXCA
By solving the first part of the expression 32=YZ5 we get,
2YZ=5×3
YZ=215=7.5 cm.
Thus, the value of YZ is equal to 7.5 cm.
Note: The possibility of mistake can be not applying the similar triangles property which is required to arrive at the solution. The other possibility of mistake can be misinterpreting the symbol of similarity to the symbol of congruence. The symbol for a similar triangle is one negation sign and the symbol for congruent triangle is two negation signs. The alternative method of solving the question can be by applying the direct formula for calculating YZ=ABXY×BC. Thus, the answer can be calculated quickly.