Solveeit Logo

Question

Question: $\int_{0}^{\frac{\pi}{2}} \frac{dx}{5+4\cos x} =$...

0π2dx5+4cosx=\int_{0}^{\frac{\pi}{2}} \frac{dx}{5+4\cos x} =

A

2tan1(13)2 \tan^{-1} (\frac{1}{3})

B

tan1(13)\tan^{-1} (\frac{1}{3})

C

23tan1(13)\frac{2}{3} \tan^{-1} (\frac{1}{3})

D

13tan1(13)\frac{1}{3} \tan^{-1} (\frac{1}{3})

Answer

23tan1(13)\frac{2}{3} \tan^{-1}\left(\frac{1}{3}\right)

Explanation

Solution

We evaluate

I=0π2dx5+4cosx.I=\int_{0}^{\frac{\pi}{2}} \frac{dx}{5+4\cos x}.

Step 1: Use the Weierstrass substitution:

t=tanx2dx=2dt1+t2,cosx=1t21+t2.t=\tan\frac{x}{2}\quad \Rightarrow \quad dx=\frac{2\,dt}{1+t^2},\quad \cos x=\frac{1-t^2}{1+t^2}.

When x=0x=0, t=0t=0; when x=π2x=\frac{\pi}{2}, t=tanπ4=1t=\tan \frac{\pi}{4}=1.

Step 2: Substitute in the integral:

5+4cosx=5+4(1t21+t2)=5(1+t2)+4(1t2)1+t2=9+t21+t2.5+4\cos x = 5+4\left(\frac{1-t^2}{1+t^2}\right)=\frac{5(1+t^2)+4(1-t^2)}{1+t^2}=\frac{9+t^2}{1+t^2}.

Thus,

I=012dt1+t21+t29+t2=201dt9+t2.I= \int_{0}^{1}\frac{2\,dt}{1+t^2}\cdot\frac{1+t^2}{9+t^2} =2\int_{0}^{1}\frac{dt}{9+t^2}.

Step 3: Integrate:

dt9+t2=13tan1(t3).\int \frac{dt}{9+t^2} = \frac{1}{3}\tan^{-1}\left(\frac{t}{3}\right).

So,

I=2[13tan1(t3)]01=23tan1(13).I=2\left[\frac{1}{3}\tan^{-1}\left(\frac{t}{3}\right)\right]_{0}^{1}=\frac{2}{3}\tan^{-1}\left(\frac{1}{3}\right).