Question
Question: $\int_{0}^{\frac{\pi}{2}} \frac{dx}{5+4\cos x} =$...
∫02π5+4cosxdx=

A
2tan−1(31)
B
tan−1(31)
C
32tan−1(31)
D
31tan−1(31)
Answer
32tan−1(31)
Explanation
Solution
We evaluate
I=∫02π5+4cosxdx.Step 1: Use the Weierstrass substitution:
t=tan2x⇒dx=1+t22dt,cosx=1+t21−t2.When x=0, t=0; when x=2π, t=tan4π=1.
Step 2: Substitute in the integral:
5+4cosx=5+4(1+t21−t2)=1+t25(1+t2)+4(1−t2)=1+t29+t2.Thus,
I=∫011+t22dt⋅9+t21+t2=2∫019+t2dt.Step 3: Integrate:
∫9+t2dt=31tan−1(3t).So,
I=2[31tan−1(3t)]01=32tan−1(31).