Solveeit Logo

Question

Real Analysis Question on Sequences and Series

Define the sequences \left\\{a_n\right\\}^{\infin}_{n=3} and \left\\{b_n\right\\}^{\infin}_{n=3} as
an=(logn+log logn)logna_n=(\log n+\log\ \log n)^{\log n} and bn=n(1+1logn)b_n=n^{(1+\frac{1}{\log n})}.
Which one of the following is TRUE ?

A

n=31an\sum\limits^{\infin}_{n=3}\frac{1}{a_n} is convergent but n=31bn\sum\limits_{n=3}^{\infin}\frac{1}{b_n} is divergent

B

n=31an\sum\limits^{\infin}_{n=3}\frac{1}{a_n} is divergent but n=31bn\sum\limits_{n=3}^{\infin}\frac{1}{b_n} is convergent

C

Both n=31an\sum\limits_{n=3}^{\infin}\frac{1}{a_n} and n=31bn\sum\limits_{n=3}^{\infin}\frac{1}{b_n} are divergent

D

Both n=31an\sum\limits_{n=3}^{\infin}\frac{1}{a_n} and n=31bn\sum\limits_{n=3}^{\infin}\frac{1}{b_n} are convergent

Answer

n=31an\sum\limits^{\infin}_{n=3}\frac{1}{a_n} is convergent but n=31bn\sum\limits_{n=3}^{\infin}\frac{1}{b_n} is divergent

Explanation

Solution

The correct option is (A) : n=31an\sum\limits^{\infin}_{n=3}\frac{1}{a_n} is convergent but n=31bn\sum\limits_{n=3}^{\infin}\frac{1}{b_n} is divergent.