Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Define f(x)f(x) as the product of two real functions f1(x)=x,xf_1(x) = x, x \in R, and f2(x)=f_2(x) = \begin{cases} sin \frac{1}{x} , & \text{If x\ne 0} \\\ 0, & \text{If x = 0} \end{cases} as follows : f(x) = \begin{cases} f_1(x).f_2(x) , & \text{If x \ne 0} \\\ \quad 0, & \text{If x = 0} \end{cases} f(x)f(x) is continuous on R. f1(x)f_1(x) and f2(x)f_2(x) are continuous on R.

A

Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is true, Statement-2 is true; Statement-2 is NOT a correct explanation for Statement-1

C

Statement-1 is true, Statement-2 is false

D

Statement-1 is false, Statement-2 is true

Answer

Statement-1 is true, Statement-2 is true; Statement-2 is NOT a correct explanation for Statement-1

Explanation

Solution

F(x) = \begin{cases} x \,sin(1/ x) , & \text{ x \ne 0} \\\ \quad 0, & \text{ x = 0} \end{cases} at x=0x = 0 LHL = \displaystyle\lim_{h\to0^{+}}\left\\{-h\,sin \left(-\frac{1}{h}\right)\right\\} =0?a= 0 ? a finite quantity between - 1 and 1 RHL=limh0+hsin1hRHL = \displaystyle\lim_{h\to0^{+}} h sin \frac{1}{h} =0= 0 f(0)=0f\left(0\right) = 0 f(x)\therefore f\left(x\right) is continuous on R. f2(x)f_{2}\left(x\right) is not continuous at x=0x = 0