Solveeit Logo

Question

Mathematics Question on Relations and functions

Define a relation RR on A=1,2,3,4A =\\{1, 2, 3, 4\\} as xRy_xR_y if xx divides yy. RR is

A

reflexive and transitive

B

reflexive and symmetric

C

symmetric and transitive

D

equivalence

Answer

reflexive and transitive

Explanation

Solution

Given set A=1,2,3,4A=\\{1,2,3,4\\} and relation, xRyx R y if xx divides yy. \Rightarrow Relation =(1,1),(2,2),(3,3),(4,4),(1,2),(1,3)(1,4),(2,4)=\\{(1,1),(2,2),(3,3),(4,4),(1,2),(1,3)(1,4),(2,4)\\} We have, xRyy/xx R y \Leftrightarrow y / x for x,yAx, y \in A For any xAx \in A, we have x/xxRxx / x \Rightarrow x R x Thus, xRxx R x for all xA.x \in A . So, RR is reflexive on AA. RR ia not symmetry because, if y/xy / x, then xx may not divide y.y . For example 4/24 / 2 but 2/42 / 4 Let x,y,zAx, y, z \in A, such that xRyx R y and yRz.y R z . Then, xRyx R y and yRzyxy R z \Rightarrow \frac{y}{x} and zyzx.\frac{z}{y} \Rightarrow \frac{z}{x} . So, RR is a transitive relation on AA.