Solveeit Logo

Question

Mathematics Question on Relations and Functions

Define a binary operation *on the set {0,1,2,3,4,5} as
ab={a+bif a+b<6 a+b6if a+b6a*b = \begin{cases} a+b & \quad \text{if } a+b<6 \\\ a+b-6 & \quad \text{if } a+b\geq6 \end{cases}
Show that zero is the identity for this operation and each element a≠0 of the set is invertible with 6−a being the inverse of a.

Answer

Let X = {0, 1, 2, 3, 4, 5}.
The operation * on X is defined as:
ab={a+bif a+b<6 a+b6if a+b6a*b = \begin{cases} a+b & \quad \text{if } a+b<6 \\\ a+b-6 & \quad \text{if } a+b\geq6 \end{cases}
An element e ∈ X is the identity element for the operation ,
if ae=a=eaaX.a*e=a=e*a \,\forall \,a \in X.
For a ∈ X, we observed that:
a0=a+0=a[aXa+0<6]a*0=a+0= \:a\,[a\in X\geq a+0<6]
0a=0+a=a[aX0+a<6]0*a=0+a=\:a[a\in X \geq0+a<6]
therefore a0=a=0aaX.\therefore a*0=a=0*a\,\forall\,a\in X.
Thus, 0 is the identity element for the given operation
.
An element a ∈ X is invertible if there exists b∈ X such that a * b = 0 = b * a
i.e a+b=0=b+a,
if a+b<6.
a+b-6=b+a-6
i.e., a = −b or b = 6 − a
But, X = {0, 1, 2, 3, 4, 5} and a, b ∈ X.
Then, a ≠ −b.
∴ b = 6 − a is the inverse of a \forall a ∈ X.

Hence, the inverse of an element a ∈ X, a ≠ 0 is 6 − a i.e., a1=6a.a^{-1}=6-a.