Solveeit Logo

Question

Quantitative Ability and Data Interpretation Question on Number Systems

David is trying to solve the expression :
(4)2×2(n+1)4×2n(4)2×2(n+2)2×2(n+2)\frac{(4)^2 \times 2^{(n+1)} - 4 \times 2^n}{(4)^2 \times 2^{(n+2)} - 2 \times 2^{(n+2)}}
And you help him to do the same and finally arrive at the answer with correct to one decimal which would be - (Note:- DO NOT include spaces in your answer)

Answer

Let's simplify the given expression step-by-step.
Given expression:
(4)2×2(n+1)4×2n(4)2×2(n+2)2×2(n+2)\frac{(4)^2 \times 2^{(n+1)} - 4 \times 2^n}{(4)^2 \times 2^{(n+2)} - 2 \times 2^{(n+2)}}
Step 1: Simplify the Numerator
The numerator is:
(4)2×2(n+1)4×2n(4)^2 \times 2^{(n+1)} - 4 \times 2^n
Since (4)2=16(4)^2 = 16, the numerator becomes:
16×2(n+1)4×2n16 \times 2^{(n+1)} - 4 \times 2^n
Step 2: Simplify the Denominator
The denominator is:
(4)2×2(n+2)2×2(n+2)(4)^2 \times 2^{(n+2)} - 2 \times 2^{(n+2)}
Again, since (4)2=16(4)^2 = 16, the denominator becomes:
16×2(n+2)2×2(n+2)16 \times 2^{(n+2)} - 2 \times 2^{(n+2)}
=(162)×2(n+2)= (16 - 2) \times 2^{(n+2)}
=14×2(n+2)= 14 \times 2^{(n+2)}
Step 3: Combine and Simplify
Now let's plug the simplified numerator and denominator back into the expression:
16×2(n+1)4×2n14×2(n+2)\frac{16 \times 2^{(n+1)} - 4 \times 2^n}{14 \times 2^{(n+2)}}
Factor out 2n2^n from the numerator:
=2n(16×24)14×2(n+2)= \frac{2^n (16 \times 2 - 4)}{14 \times 2^{(n+2)}}
=2n(324)14×2(n+2)= \frac{2^n (32 - 4)}{14 \times 2^{(n+2)}}
=2n(28)14×2(n+2)= \frac{2^n (28)}{14 \times 2^{(n+2)}}
Factor out 2n+22^{n+2} from the denominator:
=28×2n14×2(n+2)= \frac{28 \times 2^n}{14 \times 2^{(n+2)}}
Since 2(n+2)=4×2n2^{(n+2)} = 4 \times 2^n:
=28×2n14×4×2n= \frac{28 \times 2^n}{14 \times 4 \times 2^n}
Cancel 2n2^n:
=2814×4= \frac{28}{14 \times 4}
Simplify:
=2856= \frac{28}{56}
Final Answer:
=12= \frac{1}{2}
Therefore, the value is0.5.