Solveeit Logo

Question

Question: $\tan 10^\circ = \tan 20^\circ \cdot \tan 30^\circ \cdot \tan 40^\circ$....

tan10=tan20tan30tan40\tan 10^\circ = \tan 20^\circ \cdot \tan 30^\circ \cdot \tan 40^\circ.

Answer

True

Explanation

Solution

To verify the given statement: tan10=tan20tan30tan40\tan 10^\circ = \tan 20^\circ \cdot \tan 30^\circ \cdot \tan 40^\circ.

We will evaluate the Right Hand Side (RHS) of the equation and check if it equals the Left Hand Side (LHS).

RHS = tan20tan30tan40\tan 20^\circ \cdot \tan 30^\circ \cdot \tan 40^\circ

We know the exact value of tan30=13\tan 30^\circ = \frac{1}{\sqrt{3}}. Substitute this value into the RHS: RHS = tan2013tan40\tan 20^\circ \cdot \frac{1}{\sqrt{3}} \cdot \tan 40^\circ RHS = 13(tan20tan40)\frac{1}{\sqrt{3}} (\tan 20^\circ \tan 40^\circ)

Now, we use a standard trigonometric identity for products of tangents: The identity is: tanθtan(60θ)tan(60+θ)=tan(3θ)\tan \theta \tan (60^\circ - \theta) \tan (60^\circ + \theta) = \tan (3\theta)

Let's prove this identity for completeness: LHS = tanθtan(60θ)tan(60+θ)\tan \theta \tan (60^\circ - \theta) \tan (60^\circ + \theta) Using the formula tan(A±B)=tanA±tanB1tanAtanB\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} and tan60=3\tan 60^\circ = \sqrt{3}: tan(60θ)=tan60tanθ1+tan60tanθ=3tanθ1+3tanθ\tan (60^\circ - \theta) = \frac{\tan 60^\circ - \tan \theta}{1 + \tan 60^\circ \tan \theta} = \frac{\sqrt{3} - \tan \theta}{1 + \sqrt{3} \tan \theta} tan(60+θ)=tan60+tanθ1tan60tanθ=3+tanθ13tanθ\tan (60^\circ + \theta) = \frac{\tan 60^\circ + \tan \theta}{1 - \tan 60^\circ \tan \theta} = \frac{\sqrt{3} + \tan \theta}{1 - \sqrt{3} \tan \theta}

Substitute these into the LHS: LHS = tanθ(3tanθ1+3tanθ)(3+tanθ13tanθ)\tan \theta \cdot \left( \frac{\sqrt{3} - \tan \theta}{1 + \sqrt{3} \tan \theta} \right) \cdot \left( \frac{\sqrt{3} + \tan \theta}{1 - \sqrt{3} \tan \theta} \right) LHS = tanθ(3)2(tanθ)212(3tanθ)2\tan \theta \cdot \frac{(\sqrt{3})^2 - (\tan \theta)^2}{1^2 - (\sqrt{3} \tan \theta)^2} LHS = tanθ3tan2θ13tan2θ\tan \theta \cdot \frac{3 - \tan^2 \theta}{1 - 3 \tan^2 \theta}

This is the formula for tan(3θ)\tan(3\theta): tan(3θ)=3tanθtan3θ13tan2θ=tanθ3tan2θ13tan2θ\tan(3\theta) = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta} = \tan\theta \frac{3 - \tan^2\theta}{1 - 3\tan^2\theta} Thus, the identity tanθtan(60θ)tan(60+θ)=tan(3θ)\tan \theta \tan (60^\circ - \theta) \tan (60^\circ + \theta) = \tan (3\theta) is proven.

Now, let's apply this identity to the expression tan20tan40\tan 20^\circ \tan 40^\circ. Let θ=20\theta = 20^\circ. Then 60θ=6020=4060^\circ - \theta = 60^\circ - 20^\circ = 40^\circ. And 60+θ=60+20=8060^\circ + \theta = 60^\circ + 20^\circ = 80^\circ.

Using the identity: tan20tan(6020)tan(60+20)=tan(320)\tan 20^\circ \tan (60^\circ - 20^\circ) \tan (60^\circ + 20^\circ) = \tan (3 \cdot 20^\circ) tan20tan40tan80=tan60\tan 20^\circ \tan 40^\circ \tan 80^\circ = \tan 60^\circ

From this, we can express the product tan20tan40\tan 20^\circ \tan 40^\circ: tan20tan40=tan60tan80\tan 20^\circ \tan 40^\circ = \frac{\tan 60^\circ}{\tan 80^\circ}

Now substitute this back into the RHS of the original equation: RHS = 13(tan20tan40)\frac{1}{\sqrt{3}} (\tan 20^\circ \tan 40^\circ) RHS = 13tan60tan80\frac{1}{\sqrt{3}} \cdot \frac{\tan 60^\circ}{\tan 80^\circ}

We know tan60=3\tan 60^\circ = \sqrt{3}. RHS = 133tan80\frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\tan 80^\circ} RHS = 1tan80\frac{1}{\tan 80^\circ}

We also know that 1tanx=cotx\frac{1}{\tan x} = \cot x. So, 1tan80=cot80\frac{1}{\tan 80^\circ} = \cot 80^\circ. And, using the complementary angle identity cotx=tan(90x)\cot x = \tan (90^\circ - x): cot80=tan(9080)=tan10\cot 80^\circ = \tan (90^\circ - 80^\circ) = \tan 10^\circ.

So, RHS = tan10\tan 10^\circ.

The Left Hand Side (LHS) of the given equation is tan10\tan 10^\circ. Since LHS = tan10\tan 10^\circ and RHS = tan10\tan 10^\circ, we have LHS = RHS.

Therefore, the given statement is true.