Question
Question: $\tan 10^\circ = \tan 20^\circ \cdot \tan 30^\circ \cdot \tan 40^\circ$....
tan10∘=tan20∘⋅tan30∘⋅tan40∘.

True
Solution
To verify the given statement: tan10∘=tan20∘⋅tan30∘⋅tan40∘.
We will evaluate the Right Hand Side (RHS) of the equation and check if it equals the Left Hand Side (LHS).
RHS = tan20∘⋅tan30∘⋅tan40∘
We know the exact value of tan30∘=31. Substitute this value into the RHS: RHS = tan20∘⋅31⋅tan40∘ RHS = 31(tan20∘tan40∘)
Now, we use a standard trigonometric identity for products of tangents: The identity is: tanθtan(60∘−θ)tan(60∘+θ)=tan(3θ)
Let's prove this identity for completeness: LHS = tanθtan(60∘−θ)tan(60∘+θ) Using the formula tan(A±B)=1∓tanAtanBtanA±tanB and tan60∘=3: tan(60∘−θ)=1+tan60∘tanθtan60∘−tanθ=1+3tanθ3−tanθ tan(60∘+θ)=1−tan60∘tanθtan60∘+tanθ=1−3tanθ3+tanθ
Substitute these into the LHS: LHS = tanθ⋅(1+3tanθ3−tanθ)⋅(1−3tanθ3+tanθ) LHS = tanθ⋅12−(3tanθ)2(3)2−(tanθ)2 LHS = tanθ⋅1−3tan2θ3−tan2θ
This is the formula for tan(3θ): tan(3θ)=1−3tan2θ3tanθ−tan3θ=tanθ1−3tan2θ3−tan2θ Thus, the identity tanθtan(60∘−θ)tan(60∘+θ)=tan(3θ) is proven.
Now, let's apply this identity to the expression tan20∘tan40∘. Let θ=20∘. Then 60∘−θ=60∘−20∘=40∘. And 60∘+θ=60∘+20∘=80∘.
Using the identity: tan20∘tan(60∘−20∘)tan(60∘+20∘)=tan(3⋅20∘) tan20∘tan40∘tan80∘=tan60∘
From this, we can express the product tan20∘tan40∘: tan20∘tan40∘=tan80∘tan60∘
Now substitute this back into the RHS of the original equation: RHS = 31(tan20∘tan40∘) RHS = 31⋅tan80∘tan60∘
We know tan60∘=3. RHS = 31⋅tan80∘3 RHS = tan80∘1
We also know that tanx1=cotx. So, tan80∘1=cot80∘. And, using the complementary angle identity cotx=tan(90∘−x): cot80∘=tan(90∘−80∘)=tan10∘.
So, RHS = tan10∘.
The Left Hand Side (LHS) of the given equation is tan10∘. Since LHS = tan10∘ and RHS = tan10∘, we have LHS = RHS.
Therefore, the given statement is true.