Solveeit Logo

Question

Question: If p is true, q is false and r is true then the truth value of $\sim p \rightarrow (q \lor r)$ is...

If p is true, q is false and r is true then the truth value of p(qr)\sim p \rightarrow (q \lor r) is

A

F

B

T

C

either T or F

D

cannot be determined

Answer

T

Explanation

Solution

Given:

  • p=Tp = T
  • q=Fq = F
  • r=Tr = T

Step 1: Compute p\sim p:

p=F\sim p = F

Step 2: Compute qrq \lor r:

qr=FT=Tq \lor r = F \lor T = T

Step 3: Evaluate the implication:

p(qr)=FT\sim p \rightarrow (q \lor r) = F \rightarrow T

Recall that in an implication ABA \rightarrow B, if AA is false, the whole statement is true.

Thus, the given expression is T.

p=F\sim p = F; qr=Tq \lor r = T; false implies true is always true.