Solveeit Logo

Question

Mathematics Question on Functions

D = \left\\{x\in\mathbb{R}: f\left(x\right) =\sqrt{\frac{x - \left|x\right|}{x - \left[x\right]}} \text{is defined} \right\\} and CC be the range of the real function g(x)=2x4+x2g(x) = \frac{2x}{4 + x^{2}}. Then DCD \cap C

A

[12,12]\left[-\frac{1}{2},\frac{1}{2}\right]

B

[0,12]\left[0, \frac{1}{2}\right]

C

R+R^{+}

D

R+Z+R^{+ }-Z^{+}

Answer

[0,12]\left[0, \frac{1}{2}\right]

Explanation

Solution

We have,
f(x)=xxx[x]f(x)=\sqrt{\frac{x-|x|}{x-[x]}}
xx0\therefore x-|x| \geq 0 and x[x]>0x-[x] > 0
x>x\Rightarrow x > |x| and x>[x]x > [x]
xR+all integers \therefore x \in R^{+}-\\{\text {all integers }\\}
Again,
g(x)=2x4+x2g(x)=\frac{2 x}{4+x^{2}}
Let, y=2x4+x2y = \frac{2x}{4 + x^2}
4y+x2y=2x\Rightarrow 4y + x^2y = 2x
yx22x+4y=0\Rightarrow yx^2 - 2x + 4y = 0
x=2±416y22y\Rightarrow x = \frac{2 \pm \sqrt{4 - 16y^2}}{2y}
416y20\therefore 4 - 16 y^2 \ge 0 and y0y \ne 0
14y20\Rightarrow 1 - 4y^2 \ge 0 and y0y \ne 0
y[12,12]0\Rightarrow y \in \left[ - \frac{1}{2}, \frac{1}{2} \right] - \\{0\\}
\therefore Range of g(x)=[12,12]g(x) = \left[ -\frac{1}{2}, \frac{1}{2}\right]
D=R+all integers \therefore D=R^{+}- \\{\text {all integers }\\} and C=[12,12]C=\left[-\frac{1}{2}, \frac{1}{2}\right]
DC=(0,12]\therefore D \cap C=\left(0, \frac{1}{2}\right]