Question
Mathematics Question on Functions
D = \left\\{x\in\mathbb{R}: f\left(x\right) =\sqrt{\frac{x - \left|x\right|}{x - \left[x\right]}} \text{is defined} \right\\} and C be the range of the real function g(x)=4+x22x. Then D∩C
A
[−21,21]
B
[0,21]
C
R+
D
R+−Z+
Answer
[0,21]
Explanation
Solution
We have,
f(x)=x−[x]x−∣x∣
∴x−∣x∣≥0 and x−[x]>0
⇒x>∣x∣ and x>[x]
∴x∈R+−all integers
Again,
g(x)=4+x22x
Let, y=4+x22x
⇒4y+x2y=2x
⇒yx2−2x+4y=0
⇒x=2y2±4−16y2
∴4−16y2≥0 and y=0
⇒1−4y2≥0 and y=0
⇒y∈[−21,21]−0
∴ Range of g(x)=[−21,21]
∴D=R+−all integers and C=[−21,21]
∴D∩C=(0,21]