Solveeit Logo

Question

Question: If $P$ and $Q$ are points on ellipse (s) $\frac{x^2}{9}+\frac{y^2}{16}=2$ such that $\triangle PQR$ ...

If PP and QQ are points on ellipse (s) x29+y216=2\frac{x^2}{9}+\frac{y^2}{16}=2 such that PQR\triangle PQR is an isosceles triangle with PR=QRPR=QR and its area equal to 6 sq. units, where R=(0,6)R=(0,-6), then PP can have the co-ordinates

A

(3,4)(3, -4)

B

(3,4)(-3, -4)

C

(3,4)(3, 4)

D

(32,0)(3\sqrt{2}, 0)

Answer

(3,4)(3, -4) and (3,4)(-3, -4)

Explanation

Solution

The given ellipse equation is x29+y216=2\frac{x^2}{9}+\frac{y^2}{16}=2, which can be rewritten in standard form as x218+y232=1\frac{x^2}{18}+\frac{y^2}{32}=1.

The condition PR=QRPR=QR implies that P and Q must be symmetric with respect to the perpendicular bisector of PQ, which passes through R(0,-6). Assuming P and Q are symmetric with respect to the y-axis (xQ=xPx_Q = -x_P, yQ=yPy_Q = y_P), the area of PQR\triangle PQR with R=(0,-6) is given by 6=12xP(yP(6))xQ(6yP)6 = \frac{1}{2} |x_P(y_P - (-6)) - x_Q(-6 - y_P)|. Substituting xQ=xPx_Q = -x_P, we get 12=xP(yP+6)(xP)(6yP)=xP(yP+6)+xP(yP+6)=2xP(yP+6)12 = |x_P(y_P+6) - (-x_P)(-6-y_P)| = |x_P(y_P+6) + x_P(y_P+6)| = |2x_P(y_P+6)|. Thus, xP(yP+6)=6|x_P(y_P+6)| = 6.

We need to find points (x,y)(x,y) on the ellipse x218+y232=1\frac{x^2}{18}+\frac{y^2}{32}=1 that satisfy x(y+6)=6|x(y+6)| = 6.

Let's check the option (3,4)(3, -4):

  1. Is it on the ellipse? 3218+(4)232=918+1632=12+12=1\frac{3^2}{18} + \frac{(-4)^2}{32} = \frac{9}{18} + \frac{16}{32} = \frac{1}{2} + \frac{1}{2} = 1. Yes.
  2. Does it satisfy x(y+6)=6|x(y+6)| = 6? 3(4+6)=3(2)=6=6|3(-4+6)| = |3(2)| = |6| = 6. Yes.

Let's check the option (3,4)(-3, -4):

  1. Is it on the ellipse? (3)218+(4)232=918+1632=12+12=1\frac{(-3)^2}{18} + \frac{(-4)^2}{32} = \frac{9}{18} + \frac{16}{32} = \frac{1}{2} + \frac{1}{2} = 1. Yes.
  2. Does it satisfy x(y+6)=6|x(y+6)| = 6? 3(4+6)=3(2)=6=6|-3(-4+6)| = |-3(2)| = |-6| = 6. Yes.

Let's check the option (3,4)(3, 4):

  1. Is it on the ellipse? 3218+4232=918+1632=12+12=1\frac{3^2}{18} + \frac{4^2}{32} = \frac{9}{18} + \frac{16}{32} = \frac{1}{2} + \frac{1}{2} = 1. Yes.
  2. Does it satisfy x(y+6)=6|x(y+6)| = 6? 3(4+6)=3(10)=30=30|3(4+6)| = |3(10)| = |30| = 30. No.

Let's check the option (32,0)(3\sqrt{2}, 0):

  1. Is it on the ellipse? (32)218+0232=1818+0=1\frac{(3\sqrt{2})^2}{18} + \frac{0^2}{32} = \frac{18}{18} + 0 = 1. Yes.
  2. Does it satisfy x(y+6)=6|x(y+6)| = 6? 32(0+6)=1826|3\sqrt{2}(0+6)| = |18\sqrt{2}| \neq 6. No.

Therefore, the coordinates of P can be (3,4)(3, -4) and (3,4)(-3, -4).