Solveeit Logo

Question

Question: The incorrect statement is...

The incorrect statement is

A

pqp \rightarrow q is logically equivalent to pq\sim p \vee q

B

If the truth-values of p,q,rp, q, r are T,F,TT, F, T respectively, then the truth value of (pq)(qr)(p \vee q) \wedge (q \vee r) is TT.

C

(pqr)pqr\sim (p \vee q \vee r) \equiv \sim p \wedge \sim q \wedge \sim r

D

The truth-value of p(pq)p \wedge \sim (p \wedge q) is always TT.

Answer

Option (d) is the incorrect statement.

Explanation

Solution

We check each option:

  1. Option (a):
    pqpqp \rightarrow q \equiv \sim p \vee q is a standard logical equivalence. (Correct)

  2. Option (b):
    Given p=T,q=F,r=Tp = T, q = F, r = T,
    pq=TF=Tp \vee q = T \vee F = T and qr=FT=Tq \vee r = F \vee T = T.
    Hence, (pq)(qr)=TT=T(p \vee q) \wedge (q \vee r)= T \wedge T= T. (Correct)

  3. Option (c):
    By De Morgan's law,

    (pqr)pqr.\sim (p \vee q \vee r) \equiv \sim p \wedge \sim q \wedge \sim r .

    (Correct)

  4. Option (d):
    Evaluate p(pq)p \wedge \sim (p \wedge q).
    For p=Tp = T and q=Tq = T:
    pq=Tp \wedge q = T hence (pq)=F\sim (p \wedge q) = F and TF=FT \wedge F = F.
    Thus, its truth-value is not always TT. (Incorrect)

Option (d) fails for p=T,q=Tp=T, q=T since p(pq)=TF=Fp \wedge \sim(p \wedge q) = T \wedge F = F.