Question
Question: The incorrect statement is...
The incorrect statement is
A
p→q is logically equivalent to ∼p∨q
B
If the truth-values of p,q,r are T,F,T respectively, then the truth value of (p∨q)∧(q∨r) is T.
C
∼(p∨q∨r)≡∼p∧∼q∧∼r
D
The truth-value of p∧∼(p∧q) is always T.
Answer
Option (d) is the incorrect statement.
Explanation
Solution
We check each option:
-
Option (a):
p→q≡∼p∨q is a standard logical equivalence. (Correct) -
Option (b):
Given p=T,q=F,r=T,
p∨q=T∨F=T and q∨r=F∨T=T.
Hence, (p∨q)∧(q∨r)=T∧T=T. (Correct) -
Option (c):
∼(p∨q∨r)≡∼p∧∼q∧∼r.
By De Morgan's law,(Correct)
-
Option (d):
Evaluate p∧∼(p∧q).
For p=T and q=T:
p∧q=T hence ∼(p∧q)=F and T∧F=F.
Thus, its truth-value is not always T. (Incorrect)
Option (d) fails for p=T,q=T since p∧∼(p∧q)=T∧F=F.