Solveeit Logo

Question

Question: For any $1 \leq r \leq n-1$, the value of $^{n}C_r - 2 \cdot ^{n}C_{r-1} + 3 \cdot ^{n}C_{r-2} - 4 \...

For any 1rn11 \leq r \leq n-1, the value of nCr2nCr1+3nCr24nCr3++(1)r(r+1)nCrr^{n}C_r - 2 \cdot ^{n}C_{r-1} + 3 \cdot ^{n}C_{r-2} - 4 \cdot ^{n}C_{r-3} + \dots + (-1)^r(r+1) \cdot ^{n}C_{r-r} is equal to

A

n1Cr^{n-1}C_r

B

(1)rn2Cr(-1)^r \cdot ^{n-2}C_r

C

n2Cr^{n-2}C_r

D

(1)rn1Cr(-1)^r \cdot ^{n-1}C_r

Answer

n2Cr^{n-2}C_r

Explanation

Solution

Let the given series be SS. We can write it using summation notation as: S=k=0r(1)k(k+1)(nrk)S = \sum_{k=0}^{r} (-1)^k (k+1) \binom{n}{r-k}

Let j=rkj = r-k. When k=0k=0, j=rj=r. When k=rk=r, j=0j=0. So k=rjk = r-j. Substituting k=rjk=r-j into the sum: S=j=0r(1)rj(rj+1)(nj)S = \sum_{j=0}^{r} (-1)^{r-j} (r-j+1) \binom{n}{j} S=(1)rj=0r(1)j(rj+1)(nj)S = (-1)^r \sum_{j=0}^{r} (-1)^{-j} (r-j+1) \binom{n}{j} Since (1)j=(1)j(-1)^{-j} = (-1)^j: S=(1)rj=0r(1)j(rj+1)(nj)S = (-1)^r \sum_{j=0}^{r} (-1)^{j} (r-j+1) \binom{n}{j}

We can split the term (rj+1)(r-j+1) into (r+1)(r+1) and j-j: S=(1)r[j=0r(1)j(r+1)(nj)j=0r(1)jj(nj)]S = (-1)^r \left[ \sum_{j=0}^{r} (-1)^{j} (r+1) \binom{n}{j} - \sum_{j=0}^{r} (-1)^{j} j \binom{n}{j} \right] S=(1)r[(r+1)j=0r(1)j(nj)j=0r(1)jj(nj)]S = (-1)^r \left[ (r+1) \sum_{j=0}^{r} (-1)^{j} \binom{n}{j} - \sum_{j=0}^{r} (-1)^{j} j \binom{n}{j} \right]

We use the following identities for 1rn11 \leq r \leq n-1:

  1. j=0r(1)j(nj)=(1)r(n1r)\sum_{j=0}^{r} (-1)^{j} \binom{n}{j} = (-1)^r \binom{n-1}{r}
  2. j=0r(1)jj(nj)=(1)rn(n2r1)\sum_{j=0}^{r} (-1)^{j} j \binom{n}{j} = (-1)^r n \binom{n-2}{r-1}

Substituting these identities into the expression for SS: S=(1)r[(r+1)(1)r(n1r)(1)rn(n2r1)]S = (-1)^r \left[ (r+1) (-1)^r \binom{n-1}{r} - (-1)^r n \binom{n-2}{r-1} \right] S=(r+1)(n1r)n(n2r1)S = (r+1) \binom{n-1}{r} - n \binom{n-2}{r-1}

Now we simplify this expression using binomial coefficient identities. We use the identity (Nk)=(N1k)+(N1k1)\binom{N}{k} = \binom{N-1}{k} + \binom{N-1}{k-1}. (r+1)(n1r)=(r+1)((n2r)+(n2r1))(r+1) \binom{n-1}{r} = (r+1) \left( \binom{n-2}{r} + \binom{n-2}{r-1} \right) S=(r+1)(n2r)+(r+1)(n2r1)n(n2r1)S = (r+1) \binom{n-2}{r} + (r+1) \binom{n-2}{r-1} - n \binom{n-2}{r-1} S=(r+1)(n2r)+(r+1n)(n2r1)S = (r+1) \binom{n-2}{r} + (r+1-n) \binom{n-2}{r-1} S=(r+1)(n2r)(nr1)(n2r1)S = (r+1) \binom{n-2}{r} - (n-r-1) \binom{n-2}{r-1}

Consider the identity r(Nr)=N(N1r1)r \binom{N}{r} = N \binom{N-1}{r-1}. We want to show that S=(n2r)S = \binom{n-2}{r}. If S=(n2r)S = \binom{n-2}{r}, then we must have: (n2r)=(r+1)(n2r)(nr1)(n2r1)\binom{n-2}{r} = (r+1) \binom{n-2}{r} - (n-r-1) \binom{n-2}{r-1} This implies: 0=r(n2r)(nr1)(n2r1)0 = r \binom{n-2}{r} - (n-r-1) \binom{n-2}{r-1} r(n2r)=(nr1)(n2r1)r \binom{n-2}{r} = (n-r-1) \binom{n-2}{r-1}

Let's verify this identity: LHS: r(n2r)=r(n2)!r!(n2r)!=(n2)!(r1)!(n2r)!r \binom{n-2}{r} = r \frac{(n-2)!}{r!(n-2-r)!} = \frac{(n-2)!}{(r-1)!(n-2-r)!} RHS: (nr1)(n2r1)=(nr1)(n2)!(r1)!(n2(r1))!=(nr1)(n2)!(r1)!(nr1)!(n-r-1) \binom{n-2}{r-1} = (n-r-1) \frac{(n-2)!}{(r-1)!(n-2-(r-1))!} = (n-r-1) \frac{(n-2)!}{(r-1)!(n-r-1)!} =(nr1)(n2)!(r1)!(nr1)(nr2)!=(n2)!(r1)!(nr2)!= (n-r-1) \frac{(n-2)!}{(r-1)!(n-r-1)(n-r-2)!} = \frac{(n-2)!}{(r-1)!(n-r-2)!} Since (n2r)!=(nr2)!(n-2-r)! = (n-r-2)!, the identity holds.

Therefore, S=(n2r)S = \binom{n-2}{r}.