Question
Question: For any $1 \leq r \leq n-1$, the value of $^{n}C_r - 2 \cdot ^{n}C_{r-1} + 3 \cdot ^{n}C_{r-2} - 4 \...
For any 1≤r≤n−1, the value of nCr−2⋅nCr−1+3⋅nCr−2−4⋅nCr−3+⋯+(−1)r(r+1)⋅nCr−r is equal to

n−1Cr
(−1)r⋅n−2Cr
n−2Cr
(−1)r⋅n−1Cr
n−2Cr
Solution
Let the given series be S. We can write it using summation notation as: S=∑k=0r(−1)k(k+1)(r−kn)
Let j=r−k. When k=0, j=r. When k=r, j=0. So k=r−j. Substituting k=r−j into the sum: S=∑j=0r(−1)r−j(r−j+1)(jn) S=(−1)r∑j=0r(−1)−j(r−j+1)(jn) Since (−1)−j=(−1)j: S=(−1)r∑j=0r(−1)j(r−j+1)(jn)
We can split the term (r−j+1) into (r+1) and −j: S=(−1)r[∑j=0r(−1)j(r+1)(jn)−∑j=0r(−1)jj(jn)] S=(−1)r[(r+1)∑j=0r(−1)j(jn)−∑j=0r(−1)jj(jn)]
We use the following identities for 1≤r≤n−1:
- ∑j=0r(−1)j(jn)=(−1)r(rn−1)
- ∑j=0r(−1)jj(jn)=(−1)rn(r−1n−2)
Substituting these identities into the expression for S: S=(−1)r[(r+1)(−1)r(rn−1)−(−1)rn(r−1n−2)] S=(r+1)(rn−1)−n(r−1n−2)
Now we simplify this expression using binomial coefficient identities. We use the identity (kN)=(kN−1)+(k−1N−1). (r+1)(rn−1)=(r+1)((rn−2)+(r−1n−2)) S=(r+1)(rn−2)+(r+1)(r−1n−2)−n(r−1n−2) S=(r+1)(rn−2)+(r+1−n)(r−1n−2) S=(r+1)(rn−2)−(n−r−1)(r−1n−2)
Consider the identity r(rN)=N(r−1N−1). We want to show that S=(rn−2). If S=(rn−2), then we must have: (rn−2)=(r+1)(rn−2)−(n−r−1)(r−1n−2) This implies: 0=r(rn−2)−(n−r−1)(r−1n−2) r(rn−2)=(n−r−1)(r−1n−2)
Let's verify this identity: LHS: r(rn−2)=rr!(n−2−r)!(n−2)!=(r−1)!(n−2−r)!(n−2)! RHS: (n−r−1)(r−1n−2)=(n−r−1)(r−1)!(n−2−(r−1))!(n−2)!=(n−r−1)(r−1)!(n−r−1)!(n−2)! =(n−r−1)(r−1)!(n−r−1)(n−r−2)!(n−2)!=(r−1)!(n−r−2)!(n−2)! Since (n−2−r)!=(n−r−2)!, the identity holds.
Therefore, S=(rn−2).