Solveeit Logo

Question

Question: If the vectors $(2i - qj + 3k)$ and $(4i-5j + 6k)$ are collinear then the value of q is...

If the vectors (2iqj+3k)(2i - qj + 3k) and (4i5j+6k)(4i-5j + 6k) are collinear then the value of q is

A

52\frac{5}{2}

B

23\frac{2}{3}

C

52\frac{-5}{2}

D

25\frac{-2}{5}

Answer

52\frac{5}{2}

Explanation

Solution

For the two vectors to be collinear, one must be a scalar multiple of the other. Assume

(2,q,3)=λ(4,5,6)(2, -q, 3) = \lambda(4, -5, 6)

Comparing each component:

  • 2=4λ    λ=122 = 4\lambda \implies \lambda = \frac{1}{2}
  • q=5λ    q=5(12)    q=52-q = -5\lambda \implies -q = -5\left(\frac{1}{2}\right) \implies q = \frac{5}{2}
  • 3=6λ    3=6(12)3 = 6\lambda \implies 3 = 6\left(\frac{1}{2}\right) (which is consistent)

Thus, the value of qq is 52\frac{5}{2}.