Solveeit Logo

Question

Question: Curves ax<sup>2</sup> + by<sup>2</sup> = 1 & a'x<sup>2</sup> + b'y<sup>2</sup> = 1 intersects orthog...

Curves ax2 + by2 = 1 & a'x2 + b'y2 = 1 intersects orthogonally if –

A

1a1b=1a1b\frac{1}{a}–\frac{1}{b} = \frac{1}{a'}–\frac{1}{b'}

B

1a+1b=1a+1b\frac{1}{a} + \frac{1}{b} = \frac{1}{a'} + \frac{1}{b'}

C

1a+1a=1b+1b\frac{1}{a} + \frac{1}{a'} = \frac{1}{b} + \frac{1}{b'}

D

None of these

Answer

1a1b=1a1b\frac{1}{a}–\frac{1}{b} = \frac{1}{a'}–\frac{1}{b'}

Explanation

Solution

cond. ® 1a1a=1b+1b\frac{1}{a'}–\frac{1}{a} = \frac{1}{b'} + \frac{1}{b} Ž 1a1b=1a1b\frac{1}{a'}–\frac{1}{b'} = \frac{1}{a}–\frac{1}{b}