Solveeit Logo

Question

Question: Current i flows through a long conducting wire bent at right angle as shown in figure. The magnetic ...

Current i flows through a long conducting wire bent at right angle as shown in figure. The magnetic field at a point P on the right bisector of the angle XOY at a distance r from O is

A
B

2μ0iπr\frac { 2 \mu _ { 0 } \mathrm { i } } { \pi \mathrm { r } }

C

μ0i4πr(2+1)\frac { \mu _ { 0 } \mathrm { i } } { 4 \pi \mathrm { r } } ( \sqrt { 2 } + 1 )

D

μ04π2ir(2+1)\frac { \mu _ { 0 } } { 4 \pi } \cdot \frac { 2 \mathrm { i } } { \mathrm { r } } ( \sqrt { 2 } + 1 )

Answer

μ04π2ir(2+1)\frac { \mu _ { 0 } } { 4 \pi } \cdot \frac { 2 \mathrm { i } } { \mathrm { r } } ( \sqrt { 2 } + 1 )

Explanation

Solution

By using B=μ04πir(sinϕ1+sinϕ2)B = \frac { \mu _ { 0 } } { 4 \pi } \cdot \frac { i } { r } \left( \sin \phi _ { 1 } + \sin \phi _ { 2 } \right), from figure

d=rsin45=r2d = r \sin 45 ^ { \circ } = \frac { r } { \sqrt { 2 } }

Magnetic field due to each wire at P

B=μ04πi(r/2)(sin45+sin90)B = \frac { \mu _ { 0 } } { 4 \pi } \cdot \frac { i } { ( r / \sqrt { 2 } ) } \left( \sin 45 ^ { \circ } + \sin 90 ^ { \circ } \right)

=μ04πir(2+1)= \frac { \mu _ { 0 } } { 4 \pi } \cdot \frac { i } { r } ( \sqrt { 2 } + 1 )

Hence net magnetic field at P