Solveeit Logo

Question

Question: Current density in a cylindrical wire is varying with radial distance r as $J = \frac{J_0}{R^2}r(R-r...

Current density in a cylindrical wire is varying with radial distance r as J=J0R2r(Rr)J = \frac{J_0}{R^2}r(R-r), where R is radius of wire. If B is magnetic field due to this wire, then choose the incorrect options.

A

Maximum magnetic field will be at a distance 8R9\frac{8R}{9}

B

Maximum magnetic field will be at a distance R.

C

Maximum magnetic field will be μ0J0R12\frac{\mu_0J_0R}{12}

D

Maximum magnetic field will be 64μ0J0R729\frac{64\mu_0J_0R}{729}

Answer

B, C

Explanation

Solution

The current density in the cylindrical wire is given by J=J0R2r(Rr)J = \frac{J_0}{R^2}r(R-r), where RR is the radius of the wire and rr is the radial distance from the axis.

We use Ampere's Law to find the magnetic field B(r)B(r). For a circular Amperian loop of radius rr centered on the axis, Ampere's Law is B(r)2πr=μ0Ienc(r)B(r) \cdot 2\pi r = \mu_0 I_{enc}(r), where Ienc(r)I_{enc}(r) is the current enclosed by the loop.

Case 1: Magnetic field inside the wire (rRr \le R)

The enclosed current is Ienc(r)=0rJ(r)dA=0rJ0R2r(Rr)(2πrdr)I_{enc}(r) = \int_0^r J(r') dA = \int_0^r \frac{J_0}{R^2}r'(R-r') (2\pi r' dr').

Ienc(r)=2πJ0R20r(Rr2r3)dr=2πJ0R2[Rr33r44]0r=2πJ0R2(Rr33r44)I_{enc}(r) = \frac{2\pi J_0}{R^2} \int_0^r (Rr'^2 - r'^3) dr' = \frac{2\pi J_0}{R^2} \left[ \frac{Rr'^3}{3} - \frac{r'^4}{4} \right]_0^r = \frac{2\pi J_0}{R^2} \left( \frac{Rr^3}{3} - \frac{r^4}{4} \right).

Using Ampere's Law, B(r)2πr=μ02πJ0R2(Rr33r44)B(r) \cdot 2\pi r = \mu_0 \frac{2\pi J_0}{R^2} \left( \frac{Rr^3}{3} - \frac{r^4}{4} \right).

B(r)=μ0J0R2(Rr23r34)B(r) = \frac{\mu_0 J_0}{R^2} \left( \frac{Rr^2}{3} - \frac{r^3}{4} \right) for 0rR0 \le r \le R.

To find the maximum magnetic field inside the wire, we differentiate B(r)B(r) with respect to rr and set it to zero.

dBdr=μ0J0R2(2Rr33r24)\frac{dB}{dr} = \frac{\mu_0 J_0}{R^2} \left( \frac{2Rr}{3} - \frac{3r^2}{4} \right).

Setting dBdr=0\frac{dB}{dr} = 0 gives 2Rr33r24=0\frac{2Rr}{3} - \frac{3r^2}{4} = 0, which factors as r(2R33r4)=0r \left( \frac{2R}{3} - \frac{3r}{4} \right) = 0.

This gives r=0r=0 or 2R3=3r4\frac{2R}{3} = \frac{3r}{4}, so r=8R9r = \frac{8R}{9}.

The value r=8R9r = \frac{8R}{9} is within the wire (0<8R9<R0 < \frac{8R}{9} < R).

We can check the second derivative or the values at critical points and boundaries.

B(0)=0B(0) = 0.

B(R)=μ0J0R2(R(R)23R34)=μ0J0R2(R33R34)=μ0J0R2R312=μ0J0R12B(R) = \frac{\mu_0 J_0}{R^2} \left( \frac{R(R)^2}{3} - \frac{R^3}{4} \right) = \frac{\mu_0 J_0}{R^2} \left( \frac{R^3}{3} - \frac{R^3}{4} \right) = \frac{\mu_0 J_0}{R^2} \frac{R^3}{12} = \frac{\mu_0 J_0 R}{12}.

B(8R9)=μ0J0R2(R3(8R9)214(8R9)3)=μ0J0R2(R364R28114512R3729)B\left(\frac{8R}{9}\right) = \frac{\mu_0 J_0}{R^2} \left( \frac{R}{3}\left(\frac{8R}{9}\right)^2 - \frac{1}{4}\left(\frac{8R}{9}\right)^3 \right) = \frac{\mu_0 J_0}{R^2} \left( \frac{R}{3}\frac{64R^2}{81} - \frac{1}{4}\frac{512R^3}{729} \right)

B(8R9)=μ0J0R2(64R3243128R3729)=μ0J0R(64243128729)=μ0J0R(192128729)=64μ0J0R729B\left(\frac{8R}{9}\right) = \frac{\mu_0 J_0}{R^2} \left( \frac{64R^3}{243} - \frac{128R^3}{729} \right) = \mu_0 J_0 R \left( \frac{64}{243} - \frac{128}{729} \right) = \mu_0 J_0 R \left( \frac{192 - 128}{729} \right) = \frac{64\mu_0 J_0 R}{729}.

Comparing B(8R9)B\left(\frac{8R}{9}\right) and B(R)B(R): 647290.08779\frac{64}{729} \approx 0.08779 and 1120.08333\frac{1}{12} \approx 0.08333. Since 64729>112\frac{64}{729} > \frac{1}{12}, the maximum magnetic field inside the wire occurs at r=8R9r = \frac{8R}{9}.

Case 2: Magnetic field outside the wire (r>Rr > R)

The total current flowing through the wire is Itotal=Ienc(R)=2πJ0R2R412=πJ0R26I_{total} = I_{enc}(R) = \frac{2\pi J_0}{R^2} \frac{R^4}{12} = \frac{\pi J_0 R^2}{6}.

For r>Rr > R, B(r)2πr=μ0Itotal=μ0πJ0R26B(r) \cdot 2\pi r = \mu_0 I_{total} = \mu_0 \frac{\pi J_0 R^2}{6}.

B(r)=μ0J0R212rB(r) = \frac{\mu_0 J_0 R^2}{12r} for r>Rr > R.

This function decreases as rr increases for r>Rr > R. The maximum value for rRr \ge R occurs at r=Rr=R, which is B(R)=μ0J0R12B(R) = \frac{\mu_0 J_0 R}{12}.

Comparing the maximum value inside the wire B(8R9)=64μ0J0R729B\left(\frac{8R}{9}\right) = \frac{64\mu_0 J_0 R}{729} with the maximum value outside (which occurs at the surface) B(R)=μ0J0R12B(R) = \frac{\mu_0 J_0 R}{12}, we found that B(8R9)>B(R)B\left(\frac{8R}{9}\right) > B(R).

Thus, the overall maximum magnetic field occurs at r=8R9r = \frac{8R}{9} and its value is 64μ0J0R729\frac{64\mu_0 J_0 R}{729}.

Now let's evaluate the options:

A Maximum magnetic field will be at a distance 8R9\frac{8R}{9}. This is correct.

B Maximum magnetic field will be at a distance R. This is incorrect. The maximum is at r=8R9r = \frac{8R}{9}.

C Maximum magnetic field will be μ0J0R12\frac{\mu_0J_0R}{12}. This is incorrect. This is the value at r=Rr=R, not the maximum value.

D Maximum magnetic field will be 64μ0J0R729\frac{64\mu_0J_0R}{729}. This is correct. This is the value at r=8R9r = \frac{8R}{9}.

The question asks for the incorrect options. Options B and C are incorrect.