Solveeit Logo

Question

Question: Crn−1=(k2−8)Cr+1n if and only if :...

Crn−1=(k2−8)Cr+1n if and only if :

Answer

k^2-8 = \frac{r(r+1)}{(n-r)(n-r+1)}

Explanation

Solution

To solve the equation Cr1n=(k28)Cr+1nC_{r-1}^n = (k^2-8)C_{r+1}^n, we will use the definition of combinations, Cxn=n!x!(nx)!C_x^n = \frac{n!}{x!(n-x)!}.

First, let's write out the terms for Cr1nC_{r-1}^n and Cr+1nC_{r+1}^n: Cr1n=n!(r1)!(n(r1))!=n!(r1)!(nr+1)!C_{r-1}^n = \frac{n!}{(r-1)!(n-(r-1))!} = \frac{n!}{(r-1)!(n-r+1)!}

Cr+1n=n!(r+1)!(n(r+1))!=n!(r+1)!(nr1)!C_{r+1}^n = \frac{n!}{(r+1)!(n-(r+1))!} = \frac{n!}{(r+1)!(n-r-1)!}

Now, substitute these expressions into the given equation: n!(r1)!(nr+1)!=(k28)n!(r+1)!(nr1)!\frac{n!}{(r-1)!(n-r+1)!} = (k^2-8) \frac{n!}{(r+1)!(n-r-1)!}

Assuming n!0n! \neq 0 (which is true for n0n \ge 0), we can cancel n!n! from both sides: 1(r1)!(nr+1)!=(k28)1(r+1)!(nr1)!\frac{1}{(r-1)!(n-r+1)!} = (k^2-8) \frac{1}{(r+1)!(n-r-1)!}

To isolate (k28)(k^2-8), multiply both sides by (r+1)!(nr1)!(r+1)!(n-r-1)!: k28=(r+1)!(nr1)!(r1)!(nr+1)!k^2-8 = \frac{(r+1)!(n-r-1)!}{(r-1)!(n-r+1)!}

Next, we expand the factorials in the numerator and denominator to find common terms that can be cancelled: (r+1)!=(r+1)r(r1)!(r+1)! = (r+1) \cdot r \cdot (r-1)! (nr+1)!=(nr+1)(nr)(nr1)!(n-r+1)! = (n-r+1) \cdot (n-r) \cdot (n-r-1)!

Substitute these expanded forms back into the equation for (k28)(k^2-8): k28=(r+1)r(r1)!(nr1)!(r1)!(nr+1)(nr)(nr1)!k^2-8 = \frac{(r+1) \cdot r \cdot (r-1)! \cdot (n-r-1)!}{(r-1)! \cdot (n-r+1) \cdot (n-r) \cdot (n-r-1)!}

Now, cancel out the common factorial terms, (r1)!(r-1)! and (nr1)!(n-r-1)!: k28=r(r+1)(nr)(nr+1)k^2-8 = \frac{r(r+1)}{(n-r)(n-r+1)}

This is the condition "if and only if" the given equation holds. For the combinations to be defined, we must have r10    r1r-1 \ge 0 \implies r \ge 1 and nr+1n \ge r+1. Under these conditions, all terms in the expression r(r+1)(nr)(nr+1)\frac{r(r+1)}{(n-r)(n-r+1)} are positive, which implies k28k^2-8 must be positive.