Solveeit Logo

Question

Question: A heavy particle is tied to the end A of a string of length 1.6 m. Its other end O is fixed. It revo...

A heavy particle is tied to the end A of a string of length 1.6 m. Its other end O is fixed. It revolves as a conical pendulum with the string making 60° with the vertical. Then

A

its period of revolution is 4π7\frac{4\pi}{7} sec.

B

the tension in the string is double the weight of the particle

C

the velocity of the particle = 2.8√3 m/s

D

the centripetal acceleration of the particle is 9.8√3 m/s².

Answer

All options are correct

Explanation

Solution

The problem describes a heavy particle revolving as a conical pendulum. We need to analyze the forces and motion to determine the correctness of the given statements.

1. Setup and Forces:

Let the mass of the particle be 'm' and the length of the string be L = 1.6 m.
The string makes an angle θ = 60° with the vertical.
The forces acting on the particle are:

  • Tension (T) in the string, acting along the string.
  • Weight (mg) of the particle, acting vertically downwards.

2. Resolution of Forces and Equations of Motion:

Resolve the tension T into two components:

  • Vertical component: T cosθ (balances the weight)
  • Horizontal component: T sinθ (provides the centripetal force)

From vertical equilibrium:

Tcosθ=mg(Equation 1)T \cos\theta = mg \quad \text{(Equation 1)}

From horizontal motion (centripetal force):

Tsinθ=mv2r=mω2r(Equation 2)T \sin\theta = \frac{mv^2}{r} = m\omega^2 r \quad \text{(Equation 2)}

where 'r' is the radius of the circular path, 'v' is the linear velocity, and 'ω' is the angular velocity.

3. Geometric Relations:

The radius of the circular path 'r' and the height 'h' of the cone are related to the string length 'L' and angle 'θ':

r=Lsinθr = L \sin\theta h=Lcosθh = L \cos\theta

Given L = 1.6 m and θ = 60°:

r=1.6sin(60)=1.6×32=0.83 mr = 1.6 \sin(60^\circ) = 1.6 \times \frac{\sqrt{3}}{2} = 0.8\sqrt{3} \text{ m} h=1.6cos(60)=1.6×12=0.8 mh = 1.6 \cos(60^\circ) = 1.6 \times \frac{1}{2} = 0.8 \text{ m}

4. Evaluate Each Option:

(B) The tension in the string is double the weight of the particle:

From Equation 1:

T=mgcosθT = \frac{mg}{\cos\theta}

Substitute θ = 60°:

T=mgcos(60)=mg1/2=2mgT = \frac{mg}{\cos(60^\circ)} = \frac{mg}{1/2} = 2mg

So, the tension in the string is indeed double the weight of the particle. Option (B) is correct.

(A) Its period of revolution is 4π7\frac{4\pi}{7} sec:

To find the period (T_period), we can use the formula derived from the equations of motion.
Divide Equation 2 by Equation 1:

TsinθTcosθ=mω2rmg\frac{T \sin\theta}{T \cos\theta} = \frac{m\omega^2 r}{mg}

tanθ=ω2rg\tan\theta = \frac{\omega^2 r}{g}

Substitute r=Lsinθr = L \sin\theta and ω=2πTperiod\omega = \frac{2\pi}{T_{period}}:

tanθ=(2π/Tperiod)2Lsinθg\tan\theta = \frac{(2\pi/T_{period})^2 L \sin\theta}{g}

sinθcosθ=4π2LsinθgTperiod2\frac{\sin\theta}{\cos\theta} = \frac{4\pi^2 L \sin\theta}{g T_{period}^2}

1cosθ=4π2LgTperiod2\frac{1}{\cos\theta} = \frac{4\pi^2 L}{g T_{period}^2}

Tperiod2=4π2LcosθgT_{period}^2 = \frac{4\pi^2 L \cos\theta}{g}

Tperiod=2πLcosθgT_{period} = 2\pi \sqrt{\frac{L \cos\theta}{g}}

Substitute L = 1.6 m, θ = 60°, and g = 9.8 m/s²:

Tperiod=2π1.6×cos(60)9.8T_{period} = 2\pi \sqrt{\frac{1.6 \times \cos(60^\circ)}{9.8}}

Tperiod=2π1.6×(1/2)9.8T_{period} = 2\pi \sqrt{\frac{1.6 \times (1/2)}{9.8}}

Tperiod=2π0.89.8=2π898=2π449T_{period} = 2\pi \sqrt{\frac{0.8}{9.8}} = 2\pi \sqrt{\frac{8}{98}} = 2\pi \sqrt{\frac{4}{49}}

Tperiod=2π×27=4π7 secT_{period} = 2\pi \times \frac{2}{7} = \frac{4\pi}{7} \text{ sec} Option (A) is correct.

(C) The velocity of the particle = 2.8√3 m/s:

We can find the linear velocity 'v' using v=ωrv = \omega r.
First, calculate angular velocity 'ω':

ω=2πTperiod=2π4π/7=72 rad/s\omega = \frac{2\pi}{T_{period}} = \frac{2\pi}{4\pi/7} = \frac{7}{2} \text{ rad/s}

Now, calculate 'v':

v=ωr=72×(0.83)v = \omega r = \frac{7}{2} \times (0.8\sqrt{3})

v=72×453=1453=2.83 m/sv = \frac{7}{2} \times \frac{4}{5}\sqrt{3} = \frac{14}{5}\sqrt{3} = 2.8\sqrt{3} \text{ m/s} Option (C) is correct.

(D) The centripetal acceleration of the particle is 9.8√3 m/s²:

Centripetal acceleration ac=v2ra_c = \frac{v^2}{r} or ac=ω2ra_c = \omega^2 r.
Using ac=ω2ra_c = \omega^2 r:

ac=(72)2×(0.83)a_c = \left(\frac{7}{2}\right)^2 \times (0.8\sqrt{3})

ac=494×453=4953=9.83 m/s2a_c = \frac{49}{4} \times \frac{4}{5}\sqrt{3} = \frac{49}{5}\sqrt{3} = 9.8\sqrt{3} \text{ m/s}^2

Alternatively, from the force equations:

Tsinθ=macT \sin\theta = m a_c Tcosθ=mgT \cos\theta = mg

Dividing the first by the second:

tanθ=acg\tan\theta = \frac{a_c}{g}

ac=gtanθa_c = g \tan\theta

ac=9.8tan(60)=9.83 m/s2a_c = 9.8 \tan(60^\circ) = 9.8\sqrt{3} \text{ m/s}^2 Option (D) is correct.

All the given options (A), (B), (C), and (D) are correct statements regarding the conical pendulum described.

The final answer is A,B,C,D\boxed{A, B, C, D}

Explanation of the solution:

  1. Forces: Identify tension (T) and weight (mg).
  2. Equilibrium/Motion Equations: Vertical equilibrium: Tcosθ=mgT \cos\theta = mg. Horizontal centripetal force: Tsinθ=mω2rT \sin\theta = m\omega^2 r.
  3. Geometric Relations: Radius r=Lsinθr = L \sin\theta.
  4. Tension: From vertical equilibrium, T=mg/cosθ=mg/cos(60)=2mgT = mg/\cos\theta = mg/\cos(60^\circ) = 2mg. (Option B)
  5. Period: Divide horizontal by vertical force equations to get tanθ=ω2r/g\tan\theta = \omega^2 r / g. Substitute ω=2π/Tperiod\omega = 2\pi/T_{period} and r=Lsinθr = L \sin\theta to derive Tperiod=2πLcosθ/gT_{period} = 2\pi \sqrt{L \cos\theta / g}. Calculate Tperiod=2π1.6×0.5/9.8=4π/7T_{period} = 2\pi \sqrt{1.6 \times 0.5 / 9.8} = 4\pi/7 sec. (Option A)
  6. Velocity: Calculate angular velocity ω=2π/Tperiod=7/2\omega = 2\pi/T_{period} = 7/2 rad/s. Then v=ωr=(7/2)×(0.83)=2.83v = \omega r = (7/2) \times (0.8\sqrt{3}) = 2.8\sqrt{3} m/s. (Option C)
  7. Centripetal Acceleration: ac=gtanθ=9.8tan(60)=9.83a_c = g \tan\theta = 9.8 \tan(60^\circ) = 9.8\sqrt{3} m/s². (Option D)

All options are mathematically verified to be correct.