Solveeit Logo

Question

Question: $\cot^2 \frac{\pi}{7} + \cot^2 \frac{2\pi}{7} + \cot^2 \frac{3\pi}{7} = 5.$...

cot2π7+cot22π7+cot23π7=5.\cot^2 \frac{\pi}{7} + \cot^2 \frac{2\pi}{7} + \cot^2 \frac{3\pi}{7} = 5.

Answer

5

Explanation

Solution

To verify the identity cot2π7+cot22π7+cot23π7=5\cot^2 \frac{\pi}{7} + \cot^2 \frac{2\pi}{7} + \cot^2 \frac{3\pi}{7} = 5, we can use the relationship between the roots of a polynomial and trigonometric functions.

  1. Consider the equation sin(7x)=0\sin(7x) = 0.

    The solutions are x=kπ7x = \frac{k\pi}{7} for any integer kk. We can express sin(7x)\sin(7x) in terms of sinx\sin x and cosx\cos x using De Moivre's theorem. (cosx+isinx)7=cos(7x)+isin(7x)(\cos x + i \sin x)^7 = \cos(7x) + i \sin(7x) Expanding the left side using the binomial theorem and taking the imaginary part: sin(7x)=(71)cos6xsinx(73)cos4xsin3x+(75)cos2xsin5x(77)sin7x\sin(7x) = \binom{7}{1} \cos^6 x \sin x - \binom{7}{3} \cos^4 x \sin^3 x + \binom{7}{5} \cos^2 x \sin^5 x - \binom{7}{7} \sin^7 x Substitute the binomial coefficients: (71)=7\binom{7}{1} = 7 (73)=7×6×53×2×1=35\binom{7}{3} = \frac{7 \times 6 \times 5}{3 \times 2 \times 1} = 35 (75)=(72)=7×62×1=21\binom{7}{5} = \binom{7}{2} = \frac{7 \times 6}{2 \times 1} = 21 (77)=1\binom{7}{7} = 1 So, the equation becomes: sin(7x)=7cos6xsinx35cos4xsin3x+21cos2xsin5xsin7x\sin(7x) = 7 \cos^6 x \sin x - 35 \cos^4 x \sin^3 x + 21 \cos^2 x \sin^5 x - \sin^7 x

  2. Form a polynomial in cot2x\cot^2 x.

    For x=kπ7x = \frac{k\pi}{7} where k{1,2,3,4,5,6}k \in \{1, 2, 3, 4, 5, 6\}, we have sin(7x)=0\sin(7x) = 0 and sinx0\sin x \neq 0. Divide the equation by sin7x\sin^7 x: 0=7cos6xsin6x35cos4xsin4x+21cos2xsin2x10 = 7 \frac{\cos^6 x}{\sin^6 x} - 35 \frac{\cos^4 x}{\sin^4 x} + 21 \frac{\cos^2 x}{\sin^2 x} - 1 Let y=cot2xy = \cot^2 x. The equation transforms into a cubic polynomial in yy: 7y335y2+21y1=07y^3 - 35y^2 + 21y - 1 = 0

  3. Identify the roots of the polynomial.

    The roots of this cubic equation are the values of cot2x\cot^2 x for x=kπ7x = \frac{k\pi}{7}, where k{1,2,3,4,5,6}k \in \{1, 2, 3, 4, 5, 6\}. However, due to the property cot2(πθ)=(cotθ)2=cot2θ\cot^2(\pi - \theta) = (-\cot \theta)^2 = \cot^2 \theta: cot2(4π7)=cot2(π3π7)=cot2(3π7)\cot^2(\frac{4\pi}{7}) = \cot^2(\pi - \frac{3\pi}{7}) = \cot^2(\frac{3\pi}{7}) cot2(5π7)=cot2(π2π7)=cot2(2π7)\cot^2(\frac{5\pi}{7}) = \cot^2(\pi - \frac{2\pi}{7}) = \cot^2(\frac{2\pi}{7}) cot2(6π7)=cot2(ππ7)=cot2(π7)\cot^2(\frac{6\pi}{7}) = \cot^2(\pi - \frac{\pi}{7}) = \cot^2(\frac{\pi}{7}) The angles π7,2π7,3π7\frac{\pi}{7}, \frac{2\pi}{7}, \frac{3\pi}{7} are distinct and lie in the first quadrant, so their cotangent values are distinct and positive. Therefore, their squares cot2(π7)\cot^2(\frac{\pi}{7}), cot2(2π7)\cot^2(\frac{2\pi}{7}), cot2(3π7)\cot^2(\frac{3\pi}{7}) are the three distinct roots of the cubic equation 7y335y2+21y1=07y^3 - 35y^2 + 21y - 1 = 0.

  4. Apply Vieta's formulas.

    For a cubic equation ay3+by2+cy+d=0ay^3 + by^2 + cy + d = 0, the sum of the roots is given by b/a-b/a. In our equation 7y335y2+21y1=07y^3 - 35y^2 + 21y - 1 = 0: a=7a = 7, b=35b = -35, c=21c = 21, d=1d = -1. The sum of the roots is: cot2π7+cot22π7+cot23π7=357=357=5\cot^2 \frac{\pi}{7} + \cot^2 \frac{2\pi}{7} + \cot^2 \frac{3\pi}{7} = -\frac{-35}{7} = \frac{35}{7} = 5.

Thus, the identity is verified.

Explanation of the solution:

The identity is proven by constructing a polynomial whose roots are the terms in the sum.

  1. Start with the equation sin(7x)=0\sin(7x) = 0.
  2. Express sin(7x)\sin(7x) as a polynomial in sinx\sin x and cosx\cos x using De Moivre's theorem. sin(7x)=7cos6xsinx35cos4xsin3x+21cos2xsin5xsin7x\sin(7x) = 7\cos^6 x \sin x - 35\cos^4 x \sin^3 x + 21\cos^2 x \sin^5 x - \sin^7 x.
  3. For x=kπ7x = \frac{k\pi}{7} (where k=1,2,3k=1,2,3), sin(7x)=0\sin(7x)=0 and sinx0\sin x \neq 0. Divide by sin7x\sin^7 x to get an equation in cot2x\cot^2 x. 7cot6x35cot4x+21cot2x1=07\cot^6 x - 35\cot^4 x + 21\cot^2 x - 1 = 0.
  4. Let y=cot2xy = \cot^2 x. This yields a cubic equation: 7y335y2+21y1=07y^3 - 35y^2 + 21y - 1 = 0.
  5. The roots of this cubic equation are cot2(π7)\cot^2(\frac{\pi}{7}), cot2(2π7)\cot^2(\frac{2\pi}{7}), and cot2(3π7)\cot^2(\frac{3\pi}{7}). (Note: cot2(4π7)=cot2(3π7)\cot^2(\frac{4\pi}{7}) = \cot^2(\frac{3\pi}{7}), etc.)
  6. By Vieta's formulas, the sum of the roots of ay3+by2+cy+d=0ay^3+by^2+cy+d=0 is b/a-b/a. Sum of roots =(35)/7=5= -(-35)/7 = 5.

Answer:

The given statement cot2π7+cot22π7+cot23π7=5\cot^2 \frac{\pi}{7} + \cot^2 \frac{2\pi}{7} + \cot^2 \frac{3\pi}{7} = 5 is true.