Question
Question: \({\cot ^2}\dfrac{\pi }{6} + cosec\dfrac{{5\pi }}{6} + 3{\tan ^2}\dfrac{\pi }{6} = 6\)...
cot26π+cosec65π+3tan26π=6
Solution
Note that, since 65π is in second quadrant, therefore cosec65π is positive.
Then in the left hand side, substitute the values of cot6π, cosec65π and tan6π.
On solving them we will reach our required solution.
Complete step-by-step answer:
Given that, to prove cot26π+cosec65π+3tan26π=6
Left hand side:
=cot26π+cosec65π+3tan26π
The above expression can be written as,
=cot26π+cosec(π−6π)+3tan26π
Since 65πis in the second quadrant, therefore cosec65π is positive,
=cot26π+cosec6π+3tan26π
Using, cot6π=3,tan6π=31,cosec6π=2, we get,
=(3)2+2+3×(31)2
On squaring we get,
=3+2+(3×31)
On further simplification we get,
=3+2+1
=6
= Right hand side
Hence, cot26π+cosec65π+3tan26π=6 (proved).
Note:
Note the following important formulae:
cosx=secx1 , sinx=cosecx1 , tanx=cotx1
sin2x+cos2x=1
sec2x−tan2x=1
cosec2x−cot2x=1
sin(−x)=−sinx
cos(−x)=cosx
tan(−x)=−tanx
sin(2nπ±x)=sinx , period 2π or 360∘
cos(2nπ±x)=cosx , period 2π or 360∘
tan(nπ±x)=tanx , period π or 180∘
Sign convention:
sin2x=2sinxcosx
cos2x=cos2x−sin2x=1−2sin2x=2cos2x−1
tan2x=1−tan2x2tanx=cotx−tanx2
Also, the trigonometric ratios of the standard angles are given by
| 0∘| 30∘| 45∘| 60∘| 90∘
---|---|---|---|---|---
Sinx| 0| 21 | 21 | 23 | 1
Cosx| 1| 23| 21| 21| 0
Tanx| 0| 31 | 1| 3| Undefined
Cotx| undefined| 3| 1| 31| 0
cosecx| undefined| 2| 2| 32| 1
Secx| 1| 32| 2| 2| Undefined