Solveeit Logo

Question

Question: \({\cot ^2}\dfrac{\pi }{6} + cosec\dfrac{{5\pi }}{6} + 3{\tan ^2}\dfrac{\pi }{6} = 6\)...

cot2π6+cosec5π6+3tan2π6=6{\cot ^2}\dfrac{\pi }{6} + cosec\dfrac{{5\pi }}{6} + 3{\tan ^2}\dfrac{\pi }{6} = 6

Explanation

Solution

Note that, since 5π6 is in second quadrant, therefore cosec5π6 is positive.{\text{since }}\dfrac{{5\pi }}{6}{\text{ is in second quadrant, therefore }}\operatorname{cosec} \dfrac{{5\pi }}{6}{\text{ is positive}}{\text{.}}
Then in the left hand side, substitute the values of cotπ6\cot \dfrac{\pi }{6}, cosec5π6\operatorname{cosec} \dfrac{{5\pi }}{6} and tanπ6\tan \dfrac{\pi }{6}.
On solving them we will reach our required solution.

Complete step-by-step answer:
Given that, to prove cot2π6+cosec5π6+3tan2π6=6{\cot ^2}\dfrac{\pi }{6} + cosec\dfrac{{5\pi }}{6} + 3{\tan ^2}\dfrac{\pi }{6} = 6
Left hand side:
=cot2π6+cosec5π6+3tan2π6= {\cot ^2}\dfrac{\pi }{6} + cosec\dfrac{{5\pi }}{6} + 3{\tan ^2}\dfrac{\pi }{6}
The above expression can be written as,
=cot2π6+cosec(ππ6)+3tan2π6= {\cot ^2}\dfrac{\pi }{6} + cosec\left( {\pi - \dfrac{\pi }{6}} \right) + 3{\tan ^2}\dfrac{\pi }{6}
Since 5π6\dfrac{{5\pi }}{6}is in the second quadrant, therefore cosec5π6\operatorname{cosec} \dfrac{{5\pi }}{6} is positive,
=cot2π6+cosecπ6+3tan2π6= {\cot ^2}\dfrac{\pi }{6} + cosec\dfrac{\pi }{6} + 3{\tan ^2}\dfrac{\pi }{6}
Using, cotπ6=3,tanπ6=13,cosecπ6=2\cot \dfrac{\pi }{6} = \sqrt 3 ,\tan \dfrac{\pi }{6} = \dfrac{1}{{\sqrt 3 }},\cos ec\dfrac{\pi }{6} = 2, we get,
=(3)2+2+3×(13)2= {\left( {\sqrt 3 } \right)^2} + 2 + 3 \times {\left( {\dfrac{1}{{\sqrt 3 }}} \right)^2}
On squaring we get,
=3+2+(3×13)= 3 + 2 + \left( {3 \times \dfrac{1}{3}} \right)
On further simplification we get,
=3+2+1= 3 + 2 + 1
=6= 6
= Right hand side
Hence, cot2π6+cosec5π6+3tan2π6=6{\cot ^2}\dfrac{\pi }{6} + cosec\dfrac{{5\pi }}{6} + 3{\tan ^2}\dfrac{\pi }{6} = 6 (proved).

Note:
Note the following important formulae:
cosx=1secx\cos x = \dfrac{1}{{\sec x}} , sinx=1cosecx\sin x = \dfrac{1}{{\cos ecx}} , tanx=1cotx\tan x = \dfrac{1}{{\cot x}}
sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
sec2xtan2x=1{\sec ^2}x - {\tan ^2}x = 1
cosec2xcot2x=1{\operatorname{cosec} ^2}x - {\cot ^2}x = 1
sin(x)=sinx\sin ( - x) = - \sin x
cos(x)=cosx\cos ( - x) = \cos x
tan(x)=tanx\tan ( - x) = - \tan x
sin(2nπ±x)=sinx , period 2π or 360\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }
cos(2nπ±x)=cosx , period 2π or 360\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }
tan(nπ±x)=tanx , period π or 180\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }
Sign convention:

sin2x=2sinxcosx\sin 2x = 2\sin x\cos x
cos2x=cos2xsin2x=12sin2x=2cos2x1\cos 2x = {\cos ^2}x - {\sin ^2}x = 1 - 2{\sin ^2}x = 2{\cos ^2}x - 1
tan2x=2tanx1tan2x=2cotxtanx\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}} = \dfrac{2}{{\cot x - \tan x}}
Also, the trigonometric ratios of the standard angles are given by

| 00^\circ | 3030^\circ | 4545^\circ | 6060^\circ | 9090^\circ
---|---|---|---|---|---
Sinx\operatorname{Sin} x| 0| 12\dfrac{1}{2} | 12\dfrac{1}{{\sqrt 2 }} | 32\dfrac{{\sqrt 3 }}{2} | 1
Cosx\operatorname{Cos} x| 1| 32\dfrac{{\sqrt 3 }}{2}| 12\dfrac{1}{{\sqrt 2 }}| 12\dfrac{1}{2}| 0
Tanx\operatorname{Tan} x| 0| 13\dfrac{1}{{\sqrt 3 }} | 1| 3\sqrt 3 | Undefined
CotxCotx| undefined| 3\sqrt 3 | 1| 13\dfrac{1}{{\sqrt 3 }}| 0
cosecx\cos ecx| undefined| 2| 2\sqrt 2 | 23\dfrac{2}{{\sqrt 3 }}| 1
Secx\operatorname{Sec} x| 1| 23\dfrac{2}{{\sqrt 3 }}| 2\sqrt 2 | 2| Undefined