Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

cot1(2.12)+cot1(2.22)+cot1(2.32)+\cot^{-1} (2.1^{2})+\cot^{-1} (2.2^{2})+\cot^{-1}(2.3^2)+.........up to \infty=

A

π5\frac {\pi}{5}

B

π4\frac {\pi}{4}

C

π3\frac {\pi}{3}

D

π2\frac {\pi}{2}

Answer

π4\frac {\pi}{4}

Explanation

Solution

cot1(212)+cot1(222)+cot1(232)+\cot ^{-1}\left(2 \cdot 1^{2}\right)+\cot ^{-1}\left(2 \cdot 2^{2}\right)+\cot ^{-1}\left(2 \cdot 3^{2}\right)+\ldots \infty
=r=1cot1(2r2)=r=1tan1(12r2)=\sum\limits_{r=1}^{\infty} \cot ^{-1}\left(2 \cdot r^{2}\right)=\sum\limits_{r=1}^{\infty} \tan ^{-1}\left(\frac{1}{2 r^{2}}\right)
=r=1tan1((1+2r)+(12r)1(1+2r)(12r))=\sum\limits_{r=1}^{\infty} \tan ^{-1}\left(\frac{(1+2 r)+(1-2 r)}{1-(1+2 r)(1-2 r)}\right)
=r=1[tan1(1+2r)+tan1(12r)]=\sum\limits_{r=1}^{\infty}\left[\tan ^{-1}(1+2 r)+\tan ^{-1}(1-2 r)\right]
=tan13tan11+tan15tan13=\tan ^{-1} 3-\tan ^{-1} 1+\tan ^{-1} 5-\tan ^{-1} 3
+tan17tan15++tan1+\tan ^{-1} 7-\tan ^{-1} 5+\ldots+\tan ^{-1} \infty
=π4+π2=π4=-\frac{\pi}{4}+\frac{\pi}{2}=\frac{\pi}{4}