Question
Question: \(\cot ^ { - 1 } \left[ ( \cos \alpha ) ^ { 1 / 2 } \right] - \tan ^ { - 1 } \left[ ( \cos \alpha ) ...
cot−1[(cosα)1/2]−tan−1[(cosα)1/2]=x then sinx=
A
tan2(2α)
B
cot2(2α)
C
tanα
D
cot(2α)
Answer
tan2(2α)
Explanation
Solution
tan−1[cosα1]−tan−1[cosα]=x
⇒ tan−1[1+cosαcosαcosα1−cosα]=x ⇒ tanx=2cosα1−cosα
∴sinx=1+cosα1−cosα=2cos22α2sin22α=tan2(2α) .