Solveeit Logo

Question

Question: $\cos(\tan x) - \cos x \over x$...

cos(tanx)cosxx\cos(\tan x) - \cos x \over x

Answer

0

Explanation

Solution

The problem asks to evaluate the limit of the given expression as xx approaches 00: limx0cos(tanx)cosxx\lim_{x \to 0} \frac{\cos(\tan x) - \cos x}{x}

Step 1: Check for indeterminate form. Substitute x=0x=0 into the expression: Numerator: cos(tan0)cos0=cos(0)1=11=0\cos(\tan 0) - \cos 0 = \cos(0) - 1 = 1 - 1 = 0. Denominator: 00. Since the limit is of the form 00\frac{0}{0}, we can apply L'Hopital's Rule.

Step 2: Apply L'Hopital's Rule. L'Hopital's Rule states that if limxaf(x)g(x)\lim_{x \to a} \frac{f(x)}{g(x)} is of the form 00\frac{0}{0} or \frac{\infty}{\infty}, then limxaf(x)g(x)=limxaf(x)g(x)\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}, provided the latter limit exists.

Let f(x)=cos(tanx)cosxf(x) = \cos(\tan x) - \cos x and g(x)=xg(x) = x.

Calculate the derivative of the numerator, f(x)f'(x): f(x)=ddx(cos(tanx)cosx)f'(x) = \frac{d}{dx}(\cos(\tan x) - \cos x) Using the chain rule for cos(tanx)\cos(\tan x): ddx(cosu)=sinududx\frac{d}{dx}(\cos u) = -\sin u \frac{du}{dx}. Here u=tanxu = \tan x, so dudx=sec2x\frac{du}{dx} = \sec^2 x. f(x)=sin(tanx)sec2x(sinx)f'(x) = -\sin(\tan x) \cdot \sec^2 x - (-\sin x) f(x)=sin(tanx)sec2x+sinxf'(x) = -\sin(\tan x) \sec^2 x + \sin x

Calculate the derivative of the denominator, g(x)g'(x): g(x)=ddx(x)=1g'(x) = \frac{d}{dx}(x) = 1

Now, substitute these derivatives into the limit expression: limx0sin(tanx)sec2x+sinx1\lim_{x \to 0} \frac{-\sin(\tan x) \sec^2 x + \sin x}{1}

Step 3: Evaluate the limit. Substitute x=0x=0 into the new expression: As x0x \to 0: tanxtan0=0\tan x \to \tan 0 = 0 sin(tanx)sin(0)=0\sin(\tan x) \to \sin(0) = 0 secxsec0=1\sec x \to \sec 0 = 1, so sec2x12=1\sec^2 x \to 1^2 = 1 sinxsin0=0\sin x \to \sin 0 = 0

Therefore, the limit becomes: (0)(1)+0=0+0=0-(0) \cdot (1) + 0 = 0 + 0 = 0

The value of the limit is 00.