Solveeit Logo

Question

Question: \(\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} =\)...

cosπ5cos2π5cos4π5cos8π5=\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} =

A

1/16

B

0

C

– 1/8

D

–1/16

Answer

–1/16

Explanation

Solution

cosπ5cos2π5cos4π5cos8π5=sin24π524sinπ5=sin16π516sinπ5=sin(3π+π5)16sinπ5\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} = \frac{\sin\frac{2^{4}\pi}{5}}{2^{4}\sin\frac{\pi}{5}} = \frac{\sin\frac{16\pi}{5}}{16\sin\frac{\pi}{5}} = \frac{\sin\left( 3\pi + \frac{\pi}{5} \right)}{16\sin\frac{\pi}{5}}

=sinπ516sinπ5=116= \frac{- \sin\frac{\pi}{5}}{16\sin\frac{\pi}{5}} = - \frac{1}{16}.