Solveeit Logo

Question

Question: \[(\cos\alpha + \cos\beta)^{2} + (\sin\alpha + \sin\beta)^{2} =\]...

(cosα+cosβ)2+(sinα+sinβ)2=(\cos\alpha + \cos\beta)^{2} + (\sin\alpha + \sin\beta)^{2} =

A

4cos2αβ24\cos^{2}\frac{\alpha - \beta}{2}

B

4sin2αβ24\sin^{2}\frac{\alpha - \beta}{2}

C

4cos2α+β24\cos^{2}\frac{\alpha + \beta}{2}

D

4sin2α+β24\sin^{2}\frac{\alpha + \beta}{2}

Answer

4cos2αβ24\cos^{2}\frac{\alpha - \beta}{2}

Explanation

Solution

(cosα+cosβ)2+(sinα+sinβ)2(\cos\alpha + \cos\beta)^{2} + (\sin\alpha + \sin\beta)^{2}

=cos2α+cos2β+2cosαcosβ+sin2α+= \cos ^ { 2 } \alpha + \cos ^ { 2 } \beta + 2 \cos \alpha \cos \beta + \sin ^ { 2 } \alpha + sin2β+2sinαsinβ\sin^{2}\beta + 2\sin\alpha\sin\beta

=2{1+cos(αβ)}=4cos2(αβ2)= 2\{ 1 + \cos(\alpha - \beta)\} = 4\cos^{2}\left( \frac{\alpha - \beta}{2} \right).