Solveeit Logo

Question

Question: \(\cos^{2}\left( \frac{\pi}{4} - \beta \right) - \sin^{2}\left( \alpha - \frac{\pi}{4} \right) =\)...

cos2(π4β)sin2(απ4)=\cos^{2}\left( \frac{\pi}{4} - \beta \right) - \sin^{2}\left( \alpha - \frac{\pi}{4} \right) =

A

sin(α+β)sin(αβ)\sin(\alpha + \beta)\sin(\alpha - \beta)

B

cos(α+β)cos(αβ)\cos(\alpha + \beta)\cos(\alpha - \beta)

C

sin(αβ)cos(α+β)\sin(\alpha - \beta)\cos(\alpha + \beta)

D

sin(α+β)cos(αβ)\sin(\alpha + \beta)\cos(\alpha - \beta)

Answer

sin(α+β)cos(αβ)\sin(\alpha + \beta)\cos(\alpha - \beta)

Explanation

Solution

cos2(π4β)sin2(απ4)\cos^{2}\left( \frac{\pi}{4} - \beta \right) - \sin^{2}\left( \alpha - \frac{\pi}{4} \right)

=cos(π4β+απ4)cos(π4βα+π4)= \cos\left( \frac{\pi}{4} - \beta + \alpha - \frac{\pi}{4} \right)\cos\left( \frac{\pi}{4} - \beta - \alpha + \frac{\pi}{4} \right)

=cos(αβ)cos(π2α+β)=cos(αβ)sin(α+β)= \cos(\alpha - \beta)\cos\left( \frac{\pi}{2} - \overline{\alpha + \beta} \right) = \cos(\alpha - \beta)\sin(\alpha + \beta).