Question
Question: \[\cos^{12}x + 3\cos^{10}x + 3\cos^{8}x + \cos^{6}x - 2\]...
cos12x+3cos10x+3cos8x+cos6x−2
A
0
B
1
C
3
D
sinx+sin2x=1
Answer
1
Explanation
Solution
=3[(−cosα)4+(−sinα)4]−2[cos6α+sin6α] =
}{\lbrack(\cos^{2}\alpha + \sin^{2}\alpha)^{3} - 3\cos^{2}\alpha\sin^{2}\alpha}$$ $$(\cos^{2}\alpha + \sin^{2}\alpha)\rbrack$$ =$3 - 6\sin^{2}\alpha\cos^{2}\alpha - 2 + 6\sin^{2}\alpha\cos^{2}\alpha$ = 1. **Trick :** Put $\alpha = 0,\frac{\pi}{2}$; then the value of expression remains constant i.e., it is independent of α.