Solveeit Logo

Question

Question: \[\cos^{12}x + 3\cos^{10}x + 3\cos^{8}x + \cos^{6}x - 2\]...

cos12x+3cos10x+3cos8x+cos6x2\cos^{12}x + 3\cos^{10}x + 3\cos^{8}x + \cos^{6}x - 2

A

0

B

1

C

3

D

sinx+sin2x=1\sin x + \sin^{2}x = 1

Answer

1

Explanation

Solution

=3[(cosα)4+(sinα)4]2[cos6α+sin6α]3\lbrack( - \cos\alpha)^{4} + ( - \sin\alpha)^{4}\rbrack - 2\lbrack\cos^{6}\alpha + \sin^{6}\alpha\rbrack =

}{\lbrack(\cos^{2}\alpha + \sin^{2}\alpha)^{3} - 3\cos^{2}\alpha\sin^{2}\alpha}$$ $$(\cos^{2}\alpha + \sin^{2}\alpha)\rbrack$$ =$3 - 6\sin^{2}\alpha\cos^{2}\alpha - 2 + 6\sin^{2}\alpha\cos^{2}\alpha$ = 1. **Trick :** Put $\alpha = 0,\frac{\pi}{2}$; then the value of expression remains constant i.e., it is independent of α.