Solveeit Logo

Question

Question: \( \cos \theta +\sin \theta =\cos 2\theta +\sin 2\theta \) . Find the value of \( \theta \) ....

cosθ+sinθ=cos2θ+sin2θ\cos \theta +\sin \theta =\cos 2\theta +\sin 2\theta . Find the value of θ\theta .

Explanation

Solution

Hint: Use the double angle formulae for sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta and cos2θ=cos2θsin2θ\cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta to simply the equation and reduce it in terms of θ\theta . Further use algebraic operations to further reduce the equation in terms of only sinθ\sin \theta on the LHS and cosθ\cos \theta on the RHS. Factorise the equation obtained to get two solution sets. Finally, use the formula for general solutions of sinθ=sinϕ\sin \theta =\sin \phi to find the values of θ\theta .

Complete step-by-step answer:
We know that both the expressions on the RHS, presently in terms of 2θ2\theta can be expressed as trigonometric ratios of θ\theta by using the formulae for sin2θ\sin 2\theta and cos2θ\cos 2\theta which are given as sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta and cos2θ=cos2θsin2θ\cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta .
Using these formulae on the RHS, the equation thus becomes
cosθ+sinθ=cos2θsin2θ+2sinθcosθ\cos \theta +\sin \theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta +2\sin \theta \cos \theta
We rearrange the terms such that all the terms having sinθ\sin \theta are on the LHS and all the terms having cosθ\cos \theta are on the RHS. Thus,
sinθ+sin2θ=cos2θcosθ+2sinθcosθ\sin \theta +{{\sin }^{2}}\theta ={{\cos }^{2}}\theta -\cos \theta +2\sin \theta \cos \theta

Now we subtract sinθcosθ\sin \theta \cos \theta from both sides of this equation to get the same term involving sinθ\sin \theta and cosθ\cos \theta on both sides of the equation, so as to get
sinθ+sin2θsinθcosθ=cos2θcosθ+sinθcosθ\sin \theta +{{\sin }^{2}}\theta -\sin \theta \cos \theta ={{\cos }^{2}}\theta -\cos \theta +\sin \theta \cos \theta
In this equation, we take sinθ\sin \theta common on the LHS and cosθ\cos \theta common on the RHS. This gives us

& \sin \theta \left( 1+\sin \theta -\cos \theta \right)=\cos \theta \left( 1+\sin \theta -\cos \theta \right) \\\ & \Rightarrow \sin \theta \left( 1+\sin \theta -\cos \theta \right)-\cos \theta \left( 1+\sin \theta -\cos \theta \right)=0 \\\ & \Rightarrow \left( \sin \theta -\cos \theta \right)\left( 1+\sin \theta -\cos \theta \right)=0 \\\ \end{aligned}$$ Thus the possible solutions occur when either $$\sin \theta -\cos \theta =0$$ or $$1+\sin \theta -\cos \theta =0$$ . Case I: When $$\sin \theta -\cos \theta =0$$ . $ \begin{aligned} & \Rightarrow \sin \theta =\cos \theta \\\ & \Rightarrow \sin \theta =\sin \left( {{90}^{\circ }}-\theta \right) \\\ \end{aligned} $ A general solution of the equation $ \sin \theta =\sin \phi $ is given by $ \theta =n\pi +{{\left( -1 \right)}^{n}}\phi $ . Using this general solution for the above equation, we get $ \theta =n\pi +{{\left( -1 \right)}^{n}}\left( \dfrac{\pi }{2}-\theta \right) $ . The values can be found by using $ n=0,1,... $ to get $ \theta =\dfrac{\pi }{4},\ \dfrac{5\pi }{4},\ \dfrac{9\pi }{4},\ \ldots \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 1 \right) $ Case II: When $$1+\sin \theta -\cos \theta =0$$ Use the identity $ \sin \theta -\cos \theta =\sqrt{2}\sin \left( \theta -\dfrac{\pi }{4} \right) $ . Using this identity, the equation is resolved to $ \begin{aligned} & 1+\sqrt{2}\sin \left( \theta -\dfrac{\pi }{4} \right)=0 \\\ & \Rightarrow \sqrt{2}\sin \left( \theta -\dfrac{\pi }{4} \right)=-1 \\\ & \Rightarrow \sin \left( \theta -\dfrac{\pi }{4} \right)=\dfrac{-1}{\sqrt{2}} \\\ & \Rightarrow \sin \left( \theta -\dfrac{\pi }{4} \right)=\sin \dfrac{3\pi }{4} \\\ \end{aligned} $ Finding the general solution by $ \theta =n\pi +{{\left( -1 \right)}^{n}}\phi $ where $ \theta =\theta -\dfrac{\pi }{4} $ and $ \phi =\dfrac{3\pi }{4} $ . Thus, $ \theta -\dfrac{\pi }{4}=n\pi +{{\left( -1 \right)}^{n}}\dfrac{3\pi }{4} $ Using values of $ n=0,1,\ldots $ the values of $ \theta $ can be obtained as $ \theta =\dfrac{\pi }{2},\pi ,\dfrac{5\pi }{2},3\pi ,\dfrac{9\pi }{2},5\pi ,\ldots \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 2 \right) $ Combining the result from equations (1) and (2), we get $ \theta =\dfrac{\pi }{4},\dfrac{\pi }{2},\pi ,\dfrac{5\pi }{4},\dfrac{9\pi }{4},\dfrac{5\pi }{2},3\pi ,\ldots $ Thus, these are the required values of $ \theta $ . Note: The trick here is decomposing the given expression into a factorable expression. For this, aim at resolving into as simple terms of $ \theta $ as possible and try to eliminate complex terms by simple algebraic operations. Finally, it should be kept in mind that the solution sets of both the equations need to be considered and not just one. Also, general solutions need to be considered and particular solutions can be obtained from it by substituting the values of n.