Question
Question: cos theta = [(3a)/(a^2+b^2)] - 2 ; sin theta = (-3b)/(a^2+b^2). Find (a^2+b^2) in terms of a and b o...
cos theta = [(3a)/(a^2+b^2)] - 2 ; sin theta = (-3b)/(a^2+b^2). Find (a^2+b^2) in terms of a and b only.

4a-3
Solution
Given the expressions for cosθ and sinθ:
cosθ=a2+b23a−2
sinθ=a2+b2−3b
We use the fundamental trigonometric identity: cos2θ+sin2θ=1
Substitute the given expressions into the identity: (a2+b23a−2)2+(a2+b2−3b)2=1
Expand the first term using (x−y)2=x2−2xy+y2: (a2+b23a)2−2×a2+b23a×2+(−2)2+(a2+b2)2(−3b)2=1
(a2+b2)29a2−a2+b212a+4+(a2+b2)29b2=1
Combine the terms with the common denominator (a2+b2)2: (a2+b2)29a2+9b2−a2+b212a+4=1
(a2+b2)29(a2+b2)−a2+b212a+4=1
Simplify the first term by cancelling one factor of (a2+b2) from the numerator and denominator (assuming a2+b2=0, which must be true for the original expressions to be defined): a2+b29−a2+b212a+4=1
Combine the terms with the common denominator (a2+b2): a2+b29−12a+4=1
Subtract 4 from both sides: a2+b29−12a=1−4
a2+b29−12a=−3
Multiply both sides by (a2+b2): 9−12a=−3(a2+b2)
Divide both sides by -3: −39−12a=a2+b2
−3+4a=a2+b2
Rearrange the equation to express (a2+b2): a2+b2=4a−3