Solveeit Logo

Question

Question: cos theta = [(3a)/(a^2+b^2)] - 2 ; sin theta = (-3b)/(a^2+b^2). Find (a^2+b^2) in terms of a and b o...

cos theta = [(3a)/(a^2+b^2)] - 2 ; sin theta = (-3b)/(a^2+b^2). Find (a^2+b^2) in terms of a and b only.

Answer

4a-3

Explanation

Solution

Given the expressions for cosθ\cos \theta and sinθ\sin \theta:

cosθ=3aa2+b22\cos \theta = \frac{3a}{a^2+b^2} - 2

sinθ=3ba2+b2\sin \theta = \frac{-3b}{a^2+b^2}

We use the fundamental trigonometric identity: cos2θ+sin2θ=1\cos^2 \theta + \sin^2 \theta = 1

Substitute the given expressions into the identity: (3aa2+b22)2+(3ba2+b2)2=1\left(\frac{3a}{a^2+b^2} - 2\right)^2 + \left(\frac{-3b}{a^2+b^2}\right)^2 = 1

Expand the first term using (xy)2=x22xy+y2(x-y)^2 = x^2 - 2xy + y^2: (3aa2+b2)22×3aa2+b2×2+(2)2+(3b)2(a2+b2)2=1\left(\frac{3a}{a^2+b^2}\right)^2 - 2 \times \frac{3a}{a^2+b^2} \times 2 + (-2)^2 + \frac{(-3b)^2}{(a^2+b^2)^2} = 1

9a2(a2+b2)212aa2+b2+4+9b2(a2+b2)2=1\frac{9a^2}{(a^2+b^2)^2} - \frac{12a}{a^2+b^2} + 4 + \frac{9b^2}{(a^2+b^2)^2} = 1

Combine the terms with the common denominator (a2+b2)2(a^2+b^2)^2: 9a2+9b2(a2+b2)212aa2+b2+4=1\frac{9a^2 + 9b^2}{(a^2+b^2)^2} - \frac{12a}{a^2+b^2} + 4 = 1

9(a2+b2)(a2+b2)212aa2+b2+4=1\frac{9(a^2 + b^2)}{(a^2+b^2)^2} - \frac{12a}{a^2+b^2} + 4 = 1

Simplify the first term by cancelling one factor of (a2+b2)(a^2+b^2) from the numerator and denominator (assuming a2+b20a^2+b^2 \neq 0, which must be true for the original expressions to be defined): 9a2+b212aa2+b2+4=1\frac{9}{a^2+b^2} - \frac{12a}{a^2+b^2} + 4 = 1

Combine the terms with the common denominator (a2+b2)(a^2+b^2): 912aa2+b2+4=1\frac{9 - 12a}{a^2+b^2} + 4 = 1

Subtract 4 from both sides: 912aa2+b2=14\frac{9 - 12a}{a^2+b^2} = 1 - 4

912aa2+b2=3\frac{9 - 12a}{a^2+b^2} = -3

Multiply both sides by (a2+b2)(a^2+b^2): 912a=3(a2+b2)9 - 12a = -3(a^2+b^2)

Divide both sides by -3: 912a3=a2+b2\frac{9 - 12a}{-3} = a^2+b^2

3+4a=a2+b2-3 + 4a = a^2+b^2

Rearrange the equation to express (a2+b2)(a^2+b^2): a2+b2=4a3a^2+b^2 = 4a - 3