Question
Mathematics Question on Inverse Trigonometric Functions
cos[tan−1sin(cot−1x)] is equal to
A
x2+3x2+2
B
x2+1x2+2
C
x2+2x2+1
D
None of these
Answer
x2+2x2+1
Explanation
Solution
We have, cos[tan−1sin(cot−1x)] Let cot−1x=θ⇒cotθ=x ⇒sinθ=1+x21 \therefore cos\left[tan^{-1}\left\\{sin\,\theta\right\\}\right] = cos \left[tan^{-1}\left(\frac{1}{\sqrt{1+x^{2}}}\right)\right] Again, let tan−11+x21=ϕ ⇒tanϕ=1+x21
⇒cosϕ=2+x21+x2 ∴cos[tan−11+x21]=cosϕ =x2+2x2+1