Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

cos[tan1sin(cot1x)]cos[tan^{-1}\\{sin(cot^{-1}x)\\}] is equal to

A

x2+2x2+3\sqrt{\frac{x^{2}+2}{x^{2}+3}}

B

x2+2x2+1\sqrt{\frac{x^{2}+2}{x^{2}+1}}

C

x2+1x2+2\sqrt{\frac{x^{2}+1}{x^{2}+2}}

D

None of these

Answer

x2+1x2+2\sqrt{\frac{x^{2}+1}{x^{2}+2}}

Explanation

Solution

We have, cos[tan1sin(cot1x)]cos \,[tan^{-1}\\{sin(cot^{-1}x)\\}] Let cot1x=θcotθ=xcot^{-1} \,x = \theta \Rightarrow cot\, \theta = x sinθ=11+x2\Rightarrow sin\,\theta = \frac{1}{\sqrt{1+x^{2}}} \therefore cos\left[tan^{-1}\left\\{sin\,\theta\right\\}\right] = cos \left[tan^{-1}\left(\frac{1}{\sqrt{1+x^{2}}}\right)\right] Again, let tan111+x2=ϕtan^{-1} \frac{1}{\sqrt{1+x^{2}}} = \phi tanϕ=11+x2\Rightarrow tan\,\phi= \frac{1}{\sqrt{1+x^{2}}} cosϕ=1+x22+x2\Rightarrow cos\,\phi = \frac{\sqrt{1+x^{2}}}{\sqrt{2+x^{2}}} cos[tan111+x2]=cosϕ\therefore cos \left[tan^{-1} \frac{1}{\sqrt{1+x^{2}}}\right] = cos\,\phi =x2+1x2+2= \sqrt{\frac{x^{2}+1}{x^{2}+2}}