Solveeit Logo

Question

Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles

cos(3π2+x)cos(2π+x)[cot(3π2x)+cot(2π+x)]=1cos(\frac{3{\pi}}{2}+x)cos(2{\pi}+x)[cot(\frac{3{\pi}}{2}-x)+cot(2{\pi}+x)]=1

Answer

L.H.S.=cos(3π2+x)cos(2π+x)[cot(3π2x)+cot(2π+x)]L.H.S. = cos(\frac{3{\pi}}{2}+x)cos(2{\pi}+x)[cot(\frac{3{\pi}}{2}-x)+cot(2{\pi}+x)]

=sinxcosx[tanx+cotx]sin\,x\,cos\,x[tan\,x+cot\,x]

=sinxcosx(sin.xcosx+cos.xsinx)=sin\,x\,cos\,x(\frac{sin\\.x}{cos\,x}+\frac{cos\\.x}{sin\,x})

=(sinxcosx)[sin2+cos2xsinxcosx]=(sin\,x\,cos\,x)[\frac{sin^2+cos^2\,x}{sin\,x\,cos\,x}]

=1=R.H.S.=1=R.H.S.