Solveeit Logo

Question

Mathematics Question on Trigonometric Equations

cosAcos2Acos4A...cos2n1A\cos \, A \, \cos \, 2A \, \cos \, 4A ... \cos \, 2^{n -1} A equals

A

sin2nA2nsinA\frac{\sin \, 2^n A}{2^n \, \sin \, A}

B

2nsin2nAsinA\frac{2^n \, \sin \, 2^n A}{ \sin \, A}

C

2nsinAsin2nA\frac{2^n \, \sin \, A}{ \sin \, 2^n \, A}

D

sinA2nsin2nA\frac{\sin \, A}{2^n \, \sin \, 2^n \, A}

Answer

sin2nA2nsinA\frac{\sin \, 2^n A}{2^n \, \sin \, A}

Explanation

Solution

It is a standard result.
cosAcos2Acos22A.....cos2n1A\cos \, A \, \cos \, 2A \, \cos \, 2^2 \, A..... \cos \, 2^{n - 1} A
=sin2nA2nsinA= \frac{\sin \, 2^n \, A}{2^n \, \sin \, A}