Solveeit Logo

Question

Mathematics Question on Trigonometric Equations

cos25cos215sin215+sin235\cos ^{2} 5^{\circ}-\cos ^{2} 15^{\circ}-\sin ^{2} 15^{\circ}+\sin ^{2} 35^{\circ} +cos15sin15cos5sin35=+\cos 15^{\circ} \sin 15^{\circ}-\cos 5^{\circ} \sin 35^{\circ}=

A

0

B

1

C

32\frac{3}{2}

D

2

Answer

0

Explanation

Solution

cos25cos215sin215+sin235\cos ^{2} 5^{\circ}-\cos ^{2} 15^{\circ}-\sin ^{2} 15^{\circ}+\sin ^{2} 35^{\circ}
+cos15sin15cos5sin35+\cos 15^{\circ} \sin 15^{\circ}-\cos 5^{\circ} \sin 35^{\circ}
=cos5(cos5sin35)cos15(cos15sin15)=\cos 5^{\circ}\left(\cos 5^{\circ}-\sin 35^{\circ}\right)-\cos 15^{\circ}\left(\cos 15^{\circ}-\sin 15^{\circ}\right)
+sin235sin215+\sin ^{2} 35^{\circ}-\sin ^{2} 15^{\circ}
=cos5(cos5cos55)cos15(cos15cos75)=\cos 5^{\circ}\left(\cos 5^{\circ}-\cos 55^{\circ}\right)-\cos 15^{\circ}\left(\cos 15^{\circ}-\cos 75^{\circ}\right)
+sin50sin20+\sin 50^{\circ} \sin 20^{\circ}
=cos5(2sin30sin25)cos15(2sin45sin30)=\cos 5^{\circ}\left(2 \sin 30^{\circ} \sin 25^{\circ}\right)-\cos 15^{\circ}\left(2 \sin 45^{\circ} \sin 30^{\circ}\right)
+sin50sin20+\sin 50^{\circ} \sin 20^{\circ}
=cos152+cos5sin25+sin50sin20=-\frac{\cos 15^{\circ}}{\sqrt{2}}+\cos 5^{\circ} \sin 25^{\circ}+\sin 50^{\circ} \sin 20^{\circ}
=cos152+12(2cos5cos65)+12(2sin50sin20)=-\frac{\cos 15^{\circ}}{\sqrt{2}}+\frac{1}{2}\left(2 \cos 5^{\circ} \cos 65^{\circ}\right)+\frac{1}{2}\left(2 \sin 50^{\circ} \sin 20^{\circ}\right)
=cos152+12[cos70+cos60+cos30cos70]=-\frac{\cos 15^{\circ}}{\sqrt{2}}+\frac{1}{2}\left[\cos 70^{\circ}+\cos 60^{\circ}+\cos 30^{\circ}-\cos 70^{\circ}\right]
=cos52+12[2cos45cos15]=-\frac{\cos 5^{\circ}}{\sqrt{2}}+\frac{1}{2}\left[2 \cos 45^{\circ} \cos 15^{\circ}\right]
=cos152+cos152=0=-\frac{\cos 15^{\circ}}{\sqrt{2}}+\frac{\cos 15^{\circ}}{\sqrt{2}}=0