Solveeit Logo

Question

Question: Correct statement(s) is/are: $\boxed{\phantom{x}}$ $cos^{-1}(\frac{12}{13}) + sin^{-1}(\frac{3}{5})...

Correct statement(s) is/are:

x\boxed{\phantom{x}} cos1(1213)+sin1(35)=sin1(5665)cos^{-1}(\frac{12}{13}) + sin^{-1}(\frac{3}{5}) = sin^{-1}(\frac{56}{65})

x\boxed{\phantom{x}} tan1(cosx1sinx)=π4+x2tan^{-1}(\frac{cos x}{1 - sin x}) = \frac{\pi}{4} + \frac{x}{2} for 3π2<x<π2\frac{-3\pi}{2} < x < \frac{\pi}{2}

x\boxed{\phantom{x}} cot(n=123cot1(1+k=1n2k))=2325cot(\sum_{n=1}^{23} cot^{-1}(1 + \sum_{k=1}^{n} 2k)) = \frac{23}{25}

x\boxed{\phantom{x}} sin1(sin8)+cos1(cos15)=7πsin^{-1}(sin 8) + cos^{-1}(cos 15) = 7 - \pi

A

cos1(1213)+sin1(35)=sin1(5665)cos^{-1}(\frac{12}{13}) + sin^{-1}(\frac{3}{5}) = sin^{-1}(\frac{56}{65})

B

tan1(cosx1sinx)=π4+x2tan^{-1}(\frac{cos x}{1 - sin x}) = \frac{\pi}{4} + \frac{x}{2} for 3π2<x<π2\frac{-3\pi}{2} < x < \frac{\pi}{2}

C

cot(n=123cot1(1+k=1n2k))=2325cot(\sum_{n=1}^{23} cot^{-1}(1 + \sum_{k=1}^{n} 2k)) = \frac{23}{25}

D

sin1(sin8)+cos1(cos15)=7πsin^{-1}(sin 8) + cos^{-1}(cos 15) = 7 - \pi

Answer

Statements 1, 2, and 4 are correct.

Explanation

Solution

Let's evaluate each statement.

Statement 1: cos1(1213)+sin1(35)=sin1(5665)cos^{-1}(\frac{12}{13}) + sin^{-1}(\frac{3}{5}) = sin^{-1}(\frac{56}{65})

Let A=cos1(1213)A = cos^{-1}(\frac{12}{13}) and B=sin1(35)B = sin^{-1}(\frac{3}{5}). Since 1213>0\frac{12}{13} > 0 and 35>0\frac{3}{5} > 0, both AA and BB are in the interval (0,π2)(0, \frac{\pi}{2}). cosA=1213    sinA=1(1213)2=513cos A = \frac{12}{13} \implies sin A = \sqrt{1 - (\frac{12}{13})^2} = \frac{5}{13} (since A(0,π2)A \in (0, \frac{\pi}{2})). sinB=35    cosB=1(35)2=45sin B = \frac{3}{5} \implies cos B = \sqrt{1 - (\frac{3}{5})^2} = \frac{4}{5} (since B(0,π2)B \in (0, \frac{\pi}{2})). Consider sin(A+B)=sinAcosB+cosAsinB=(513)(45)+(1213)(35)=2065+3665=5665sin(A+B) = sin A cos B + cos A sin B = (\frac{5}{13})(\frac{4}{5}) + (\frac{12}{13})(\frac{3}{5}) = \frac{20}{65} + \frac{36}{65} = \frac{56}{65}. Since A,B(0,π2)A, B \in (0, \frac{\pi}{2}), A+B(0,π)A+B \in (0, \pi). Also, A=cos1(1213)<cos1(22)=π4A = cos^{-1}(\frac{12}{13}) < cos^{-1}(\frac{\sqrt{2}}{2}) = \frac{\pi}{4} and B=sin1(35)<sin1(22)=π4B = sin^{-1}(\frac{3}{5}) < sin^{-1}(\frac{\sqrt{2}}{2}) = \frac{\pi}{4}. Thus, A+B<π4+π4=π2A+B < \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}. Since A+B(0,π2)A+B \in (0, \frac{\pi}{2}) and sin(A+B)=5665sin(A+B) = \frac{56}{65}, we have A+B=sin1(5665)A+B = sin^{-1}(\frac{56}{65}). So, cos1(1213)+sin1(35)=sin1(5665)cos^{-1}(\frac{12}{13}) + sin^{-1}(\frac{3}{5}) = sin^{-1}(\frac{56}{65}) is correct.

Statement 2: tan1(cosx1sinx)=π4+x2tan^{-1}(\frac{cos x}{1 - sin x}) = \frac{\pi}{4} + \frac{x}{2} for 3π2<x<π2\frac{-3\pi}{2} < x < \frac{\pi}{2}.

Consider the expression inside the tan1tan^{-1}: cosx1sinx=cos2(x/2)sin2(x/2)cos2(x/2)+sin2(x/2)2sin(x/2)cos(x/2)=(cos(x/2)sin(x/2))(cos(x/2)+sin(x/2))(cos(x/2)sin(x/2))2\frac{cos x}{1 - sin x} = \frac{cos^2(x/2) - sin^2(x/2)}{cos^2(x/2) + sin^2(x/2) - 2 sin(x/2) cos(x/2)} = \frac{(cos(x/2) - sin(x/2))(cos(x/2) + sin(x/2))}{(cos(x/2) - sin(x/2))^2} Assuming cos(x/2)sin(x/2)0cos(x/2) - sin(x/2) \neq 0, this simplifies to cos(x/2)+sin(x/2)cos(x/2)sin(x/2)\frac{cos(x/2) + sin(x/2)}{cos(x/2) - sin(x/2)}. Dividing the numerator and denominator by cos(x/2)cos(x/2) (assuming cos(x/2)0cos(x/2) \neq 0), we get 1+tan(x/2)1tan(x/2)=tan(π4+x2)\frac{1 + tan(x/2)}{1 - tan(x/2)} = tan(\frac{\pi}{4} + \frac{x}{2}). So, tan1(cosx1sinx)=tan1(tan(π4+x2))tan^{-1}(\frac{cos x}{1 - sin x}) = tan^{-1}(tan(\frac{\pi}{4} + \frac{x}{2})). For tan1(tanθ)=θtan^{-1}(tan \theta) = \theta, we need θ(π2,π2)\theta \in (-\frac{\pi}{2}, \frac{\pi}{2}). Let θ=π4+x2\theta = \frac{\pi}{4} + \frac{x}{2}. The given interval for xx is 3π2<x<π2\frac{-3\pi}{2} < x < \frac{\pi}{2}. Dividing by 2: 3π4<x2<π4\frac{-3\pi}{4} < \frac{x}{2} < \frac{\pi}{4}. Adding π4\frac{\pi}{4}: 3π4+π4<π4+x2<π4+π4\frac{-3\pi}{4} + \frac{\pi}{4} < \frac{\pi}{4} + \frac{x}{2} < \frac{\pi}{4} + \frac{\pi}{4}. π2<π4+x2<π2\frac{-\pi}{2} < \frac{\pi}{4} + \frac{x}{2} < \frac{\pi}{2}. Since π4+x2\frac{\pi}{4} + \frac{x}{2} lies in (π2,π2)(-\frac{\pi}{2}, \frac{\pi}{2}), tan1(tan(π4+x2))=π4+x2tan^{-1}(tan(\frac{\pi}{4} + \frac{x}{2})) = \frac{\pi}{4} + \frac{x}{2}. The conditions cos(x/2)sin(x/2)0cos(x/2) - sin(x/2) \neq 0 and cos(x/2)0cos(x/2) \neq 0 are satisfied in the interval 3π4<x2<π4\frac{-3\pi}{4} < \frac{x}{2} < \frac{\pi}{4}. So, tan1(cosx1sinx)=π4+x2tan^{-1}(\frac{cos x}{1 - sin x}) = \frac{\pi}{4} + \frac{x}{2} is correct.

Statement 3: cot(n=123cot1(1+k=1n2k))=2325cot(\sum_{n=1}^{23} cot^{-1}(1 + \sum_{k=1}^{n} 2k)) = \frac{23}{25}

The inner sum is k=1n2k=2k=1nk=2n(n+1)2=n(n+1)\sum_{k=1}^{n} 2k = 2 \sum_{k=1}^{n} k = 2 \frac{n(n+1)}{2} = n(n+1). The expression inside the cot1cot^{-1} is 1+n(n+1)1 + n(n+1). We use the identity cot1(1+n(n+1))=tan1(11+n(n+1))cot^{-1}(1 + n(n+1)) = tan^{-1}(\frac{1}{1 + n(n+1)}). We can write 11+n(n+1)=(n+1)n1+n(n+1)=tan1(n+1)tan1(n)\frac{1}{1 + n(n+1)} = \frac{(n+1) - n}{1 + n(n+1)} = tan^{-1}(n+1) - tan^{-1}(n). The sum is n=123(tan1(n+1)tan1(n))\sum_{n=1}^{23} (tan^{-1}(n+1) - tan^{-1}(n)). This is a telescoping sum. The sum equals (tan1(2)tan1(1))+(tan1(3)tan1(2))++(tan1(24)tan1(23))=tan1(24)tan1(1)(tan^{-1}(2) - tan^{-1}(1)) + (tan^{-1}(3) - tan^{-1}(2)) + \dots + (tan^{-1}(24) - tan^{-1}(23)) = tan^{-1}(24) - tan^{-1}(1). Since tan1(1)=π4tan^{-1}(1) = \frac{\pi}{4}, the sum is tan1(24)π4tan^{-1}(24) - \frac{\pi}{4}. We need to evaluate cot(tan1(24)π4)cot(tan^{-1}(24) - \frac{\pi}{4}). Let A=tan1(24)A = tan^{-1}(24). We need cot(Aπ4)cot(A - \frac{\pi}{4}). cot(Aπ4)=cotAcot(π4)+1cot(π4)cotAcot(A - \frac{\pi}{4}) = \frac{cot A cot(\frac{\pi}{4}) + 1}{cot(\frac{\pi}{4}) - cot A}. Since tanA=24tan A = 24, cotA=124cot A = \frac{1}{24}. cot(π4)=1cot(\frac{\pi}{4}) = 1. cot(Aπ4)=(124)(1)+11124=1+242424124=25242324=2523cot(A - \frac{\pi}{4}) = \frac{(\frac{1}{24})(1) + 1}{1 - \frac{1}{24}} = \frac{\frac{1+24}{24}}{\frac{24-1}{24}} = \frac{\frac{25}{24}}{\frac{23}{24}} = \frac{25}{23}. The statement claims the value is 2325\frac{23}{25}. This is incorrect.

Statement 4: sin1(sin8)+cos1(cos15)=7πsin^{-1}(sin 8) + cos^{-1}(cos 15) = 7 - \pi

For sin1(sinx)sin^{-1}(sin x), we find the value x[π2,π2]x' \in [-\frac{\pi}{2}, \frac{\pi}{2}] such that sinx=sinxsin x' = sin x. 88 radians is between 2π6.282\pi \approx 6.28 and 3π9.423\pi \approx 9.42. sin8=sin(82π)sin 8 = sin(8 - 2\pi). 82π86.28=1.728 - 2\pi \approx 8 - 6.28 = 1.72. π21.57\frac{\pi}{2} \approx 1.57. So 82π>π28 - 2\pi > \frac{\pi}{2}. We use sinx=sin(πx)sin x = sin(\pi - x). sin(82π)=sin(π(82π))=sin(3π8)sin(8 - 2\pi) = sin(\pi - (8 - 2\pi)) = sin(3\pi - 8). 3π89.428=1.423\pi - 8 \approx 9.42 - 8 = 1.42. Since 1.42[π2,π2]1.42 \in [-\frac{\pi}{2}, \frac{\pi}{2}], sin1(sin8)=3π8sin^{-1}(sin 8) = 3\pi - 8.

For cos1(cosx)cos^{-1}(cos x), we find the value x[0,π]x' \in [0, \pi] such that cosx=cosxcos x' = cos x. 1515 radians is between 4π12.564\pi \approx 12.56 and 5π15.75\pi \approx 15.7. cos15=cos(154π)cos 15 = cos(15 - 4\pi). 154π1512.56=2.4415 - 4\pi \approx 15 - 12.56 = 2.44. Since 2.44[0,π]2.44 \in [0, \pi], cos1(cos15)=154πcos^{-1}(cos 15) = 15 - 4\pi.

The left side of the statement is sin1(sin8)+cos1(cos15)=(3π8)+(154π)=158+3π4π=7πsin^{-1}(sin 8) + cos^{-1}(cos 15) = (3\pi - 8) + (15 - 4\pi) = 15 - 8 + 3\pi - 4\pi = 7 - \pi. The right side of the statement is 7π7 - \pi. So, sin1(sin8)+cos1(cos15)=7πsin^{-1}(sin 8) + cos^{-1}(cos 15) = 7 - \pi is correct.

The correct statements are 1, 2, and 4.