Question
Question: Correct statement(s) is/are: $\boxed{\phantom{x}}$ $cos^{-1}(\frac{12}{13}) + sin^{-1}(\frac{3}{5})...
Correct statement(s) is/are:
x cos−1(1312)+sin−1(53)=sin−1(6556)
x tan−1(1−sinxcosx)=4π+2x for 2−3π<x<2π
x cot(∑n=123cot−1(1+∑k=1n2k))=2523
x sin−1(sin8)+cos−1(cos15)=7−π

cos−1(1312)+sin−1(53)=sin−1(6556)
tan−1(1−sinxcosx)=4π+2x for 2−3π<x<2π
cot(∑n=123cot−1(1+∑k=1n2k))=2523
sin−1(sin8)+cos−1(cos15)=7−π
Statements 1, 2, and 4 are correct.
Solution
Let's evaluate each statement.
Statement 1: cos−1(1312)+sin−1(53)=sin−1(6556)
Let A=cos−1(1312) and B=sin−1(53). Since 1312>0 and 53>0, both A and B are in the interval (0,2π). cosA=1312⟹sinA=1−(1312)2=135 (since A∈(0,2π)). sinB=53⟹cosB=1−(53)2=54 (since B∈(0,2π)). Consider sin(A+B)=sinAcosB+cosAsinB=(135)(54)+(1312)(53)=6520+6536=6556. Since A,B∈(0,2π), A+B∈(0,π). Also, A=cos−1(1312)<cos−1(22)=4π and B=sin−1(53)<sin−1(22)=4π. Thus, A+B<4π+4π=2π. Since A+B∈(0,2π) and sin(A+B)=6556, we have A+B=sin−1(6556). So, cos−1(1312)+sin−1(53)=sin−1(6556) is correct.
Statement 2: tan−1(1−sinxcosx)=4π+2x for 2−3π<x<2π.
Consider the expression inside the tan−1: 1−sinxcosx=cos2(x/2)+sin2(x/2)−2sin(x/2)cos(x/2)cos2(x/2)−sin2(x/2)=(cos(x/2)−sin(x/2))2(cos(x/2)−sin(x/2))(cos(x/2)+sin(x/2)) Assuming cos(x/2)−sin(x/2)=0, this simplifies to cos(x/2)−sin(x/2)cos(x/2)+sin(x/2). Dividing the numerator and denominator by cos(x/2) (assuming cos(x/2)=0), we get 1−tan(x/2)1+tan(x/2)=tan(4π+2x). So, tan−1(1−sinxcosx)=tan−1(tan(4π+2x)). For tan−1(tanθ)=θ, we need θ∈(−2π,2π). Let θ=4π+2x. The given interval for x is 2−3π<x<2π. Dividing by 2: 4−3π<2x<4π. Adding 4π: 4−3π+4π<4π+2x<4π+4π. 2−π<4π+2x<2π. Since 4π+2x lies in (−2π,2π), tan−1(tan(4π+2x))=4π+2x. The conditions cos(x/2)−sin(x/2)=0 and cos(x/2)=0 are satisfied in the interval 4−3π<2x<4π. So, tan−1(1−sinxcosx)=4π+2x is correct.
Statement 3: cot(∑n=123cot−1(1+∑k=1n2k))=2523
The inner sum is ∑k=1n2k=2∑k=1nk=22n(n+1)=n(n+1). The expression inside the cot−1 is 1+n(n+1). We use the identity cot−1(1+n(n+1))=tan−1(1+n(n+1)1). We can write 1+n(n+1)1=1+n(n+1)(n+1)−n=tan−1(n+1)−tan−1(n). The sum is ∑n=123(tan−1(n+1)−tan−1(n)). This is a telescoping sum. The sum equals (tan−1(2)−tan−1(1))+(tan−1(3)−tan−1(2))+⋯+(tan−1(24)−tan−1(23))=tan−1(24)−tan−1(1). Since tan−1(1)=4π, the sum is tan−1(24)−4π. We need to evaluate cot(tan−1(24)−4π). Let A=tan−1(24). We need cot(A−4π). cot(A−4π)=cot(4π)−cotAcotAcot(4π)+1. Since tanA=24, cotA=241. cot(4π)=1. cot(A−4π)=1−241(241)(1)+1=2424−1241+24=24232425=2325. The statement claims the value is 2523. This is incorrect.
Statement 4: sin−1(sin8)+cos−1(cos15)=7−π
For sin−1(sinx), we find the value x′∈[−2π,2π] such that sinx′=sinx. 8 radians is between 2π≈6.28 and 3π≈9.42. sin8=sin(8−2π). 8−2π≈8−6.28=1.72. 2π≈1.57. So 8−2π>2π. We use sinx=sin(π−x). sin(8−2π)=sin(π−(8−2π))=sin(3π−8). 3π−8≈9.42−8=1.42. Since 1.42∈[−2π,2π], sin−1(sin8)=3π−8.
For cos−1(cosx), we find the value x′∈[0,π] such that cosx′=cosx. 15 radians is between 4π≈12.56 and 5π≈15.7. cos15=cos(15−4π). 15−4π≈15−12.56=2.44. Since 2.44∈[0,π], cos−1(cos15)=15−4π.
The left side of the statement is sin−1(sin8)+cos−1(cos15)=(3π−8)+(15−4π)=15−8+3π−4π=7−π. The right side of the statement is 7−π. So, sin−1(sin8)+cos−1(cos15)=7−π is correct.
The correct statements are 1, 2, and 4.