Solveeit Logo

Question

Question: Correct expression for density of an ideal gas mixture of two gases 1 and 2, where $m_1$ and $m_2$ a...

Correct expression for density of an ideal gas mixture of two gases 1 and 2, where m1m_1 and m2m_2 are masses and n1n_1 and n2n_2 are moles and M1M_1 and M2M_2 are molar masses.

A

d=(m1+m2)(M1+M2)d = \frac{(m_1 + m_2)}{(M_1 + M_2)}

B

d=(m1+m2)(n1+n2)PRTd = \frac{(m_1 + m_2)}{(n_1 + n_2)} \frac{P}{RT}

C

d=(n1+n2)(m1+m2)×PRTd = \frac{(n_1 + n_2)}{(m_1 + m_2)} \times \frac{P}{RT}

D

None of these

Answer

d=(m1+m2)(n1+n2)PRTd = \frac{(m_1 + m_2)}{(n_1 + n_2)} \frac{P}{RT}

Explanation

Solution

Step 1: Recall that density d=total massvolumed = \frac{\text{total mass}}{\text{volume}}.
Step 2: For an ideal gas mixture, V=(n1+n2)RTPV = \frac{(n_1 + n_2)\,RT}{P}.
Step 3: Total mass =m1+m2= m_1 + m_2.
Step 4: Substitute into d=m1+m2Vd = \frac{m_1 + m_2}{V}:

d=m1+m2(n1+n2)RTP=m1+m2n1+n2PRT.d = \frac{m_1 + m_2}{\frac{(n_1 + n_2)\,RT}{P}} = \frac{m_1 + m_2}{n_1 + n_2}\,\frac{P}{RT}.

Hence, option (b) is correct.