Solveeit Logo

Question

Question: Convert the following products into factorials: \[\left( n+1 \right)\left( n+2 \right)\left( n+3 \ri...

Convert the following products into factorials: (n+1)(n+2)(n+3)....(2n)\left( n+1 \right)\left( n+2 \right)\left( n+3 \right)....\left( 2n \right).

Explanation

Solution

To find the factorial we need to use a factorial that contains the elements given in the product. By multiplying the same element in both the numerator and denominator we will find the factorial. The formula to convert a product from product to factorial is:
x!Px!\dfrac{x!P}{x!}
where x!x! is the factorial that we have to multiply to simplify the product according to the question and PP is the product given in the question.

Complete step-by-step answer:
To find the factorial from the product we need two forms of factorial:
n!=1×2×3×....×(n1)×nn!=1\times 2\times 3\times ....\times (n-1)\times n
(2n)!=1×2×3×....×(n1)×n×(n+1)×(n+2)×......×(2n1)×2n\left( 2n \right)!=1\times 2\times 3\times ....\times \left( n-1 \right)\times n\times \left( n+1 \right)\times \left( n+2 \right)\times ......\times (2n-1)\times 2n
Now multiplying the n!n! both in numerator and denominator we get:
n!n!×(n+1)×(n+2)×(n+3)×....×(2n)1\Rightarrow \dfrac{n!}{n!}\times \dfrac{\left( n+1 \right)\times \left( n+2 \right)\times \left( n+3 \right)\times ....\times \left( 2n \right)}{1}
Expanding the factorial in the above equation we get:
[1×2×3×....×(n1)×n][(n+1)×(n+2)×(n+3)×....×(2n)]1×2×3×....×(n1)×n\Rightarrow \dfrac{\left[ 1\times 2\times 3\times ....\times (n-1)\times n \right]\left[ \left( n+1 \right)\times \left( n+2 \right)\times \left( n+3 \right)\times ....\times \left( 2n \right) \right]}{1\times 2\times 3\times ....\times (n-1)\times n}
1×2×3×....×(n1)×n×(n+1)×(n+2)×(n+3)×....×(2n)1×2×3×....×(n1)×n\Rightarrow \dfrac{1\times 2\times 3\times ....\times (n-1)\times n\times \left( n+1 \right)\times \left( n+2 \right)\times \left( n+3 \right)\times ....\times \left( 2n \right)}{1\times 2\times 3\times ....\times (n-1)\times n}
Now the numerator is similar to the factorial of 2n2n and the denominator was n!n! hence, the numerator is given as:
2n!1×2×3×....×(n1)×n\Rightarrow \dfrac{2n!}{1\times 2\times 3\times ....\times (n-1)\times n}
2n!n!\Rightarrow \dfrac{2n!}{n!}

\therefore The factorial value of the product is 2n!n!\dfrac{2n!}{n!}.

Note: Another method to solve the question is that we know that in factorial value of 2n2nis (2n)!=1×2×3×....×(n1)×n×(n+1)×(n+2)×......×(2n1)×2n\left( 2n \right)!=1\times 2\times 3\times ....\times \left( n-1 \right)\times n\times \left( n+1 \right)\times \left( n+2 \right)\times ......\times (2n-1)\times 2n. Now the product given in the question is half the factorial value of 2n2n. Hence, the product can also be written as:
(n+1)(n+2)(n+3)....(2n)\Rightarrow \left( n+1 \right)\left( n+2 \right)\left( n+3 \right)....\left( 2n \right)
(n+1)(n+2)(n+3)....(2n)=2n!1×2×3×....×(n1)×n\Rightarrow \left( n+1 \right)\left( n+2 \right)\left( n+3 \right)....\left( 2n \right)=\dfrac{2n!}{1\times 2\times 3\times ....\times (n-1)\times n}
Now changing the denominator into factorial form we get:
(n+1)(n+2)(n+3)....(2n)=2n!n!\Rightarrow \left( n+1 \right)\left( n+2 \right)\left( n+3 \right)....\left( 2n \right)=\dfrac{2n!}{n!}