Solveeit Logo

Question

Question: Convert \[r = 1 - \sin \theta \] into Cartesian form....

Convert r=1sinθr = 1 - \sin \theta into Cartesian form.

Explanation

Solution

We know that the Cartesian form is also known as the rectangular form.To convert Polar coordinates (r,θ)\left( {r,\theta } \right) to rectangular coordinates (x,y)\left( {x,y} \right), we have the equation:
x=rcosθ y=rsinθx = r\cos \theta \\\ \Rightarrow y = r\sin \theta
So by using the above equation and by using the process of substitution we can convert into r=1sinθr = 1 - \sin \theta the Cartesian form.

Complete step by step answer:
Given, r=1sinθ.....................(i)r = 1 - \sin \theta .....................\left( i \right).We know that rectangle coordinates are the Cartesian coordinates seen in the Cartesian plane which is represented by (x,y)\left( {x,y} \right) and polar coordinates give the position of a point in a plane by using the length rr and the angle made to the fixed point θ\theta , and is represented by (r,θ).\left( {r,\theta } \right).We know that (i) which is a polar coordinate is to be converted to a Cartesian coordinate. For that we can use the formula:
x=rcosθ.................(ii) y=rsinθ..................(iii) x = r\cos \theta .................\left( {ii} \right) \\\ \Rightarrow y = r\sin \theta ..................\left( {iii} \right) \\\
Now we can find the value of sinθ\sin \theta from equation (ii):
y=rsinθ sinθ=yr......................(iii) \Rightarrow y = r\sin \theta \\\ \Rightarrow \sin \theta = \dfrac{y}{r}......................\left( {iii} \right) \\\
Substituting (iii) in (i) we can write:

\Rightarrow r = 1 - \dfrac{y}{r}......................\left( {iv} \right) \\\ $$ Now we have to convert $$r = 1 - \sin \theta $$ into Cartesian form and we have to express $r$ in the form of rectangular coordinates. Such that we know from (ii) and (iii): $$x = r\cos \theta \\\ \Rightarrow y = r\sin \theta \\\ \Rightarrow {x^2} + {y^2} = {\left( {r\cos \theta } \right)^2} + {\left( {r\sin \theta } \right)^2} \\\ \Rightarrow {x^2} + {y^2} = {r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) \\\ \Rightarrow {x^2} + {y^2} = {r^2} \\\ \Rightarrow r = \sqrt {{x^2} + {y^2}} .......................\left( v \right) \\\ $$ Now substituting the value of $r$ in (iv) we can write: $$r = 1 - \dfrac{y}{r} \\\ \Rightarrow\sqrt {{x^2} + {y^2}} = 1 - \dfrac{y}{{\sqrt {{x^2} + {y^2}} }}......................\left( {vi} \right) \\\ $$ On simplifying (vi) we can write: $$\sqrt {{x^2} + {y^2}} = 1 - \dfrac{y}{{\sqrt {{x^2} + {y^2}} }} \\\ \Rightarrow\sqrt {{x^2} + {y^2}} = \dfrac{{\sqrt {{x^2} + {y^2}} - y}}{{\sqrt {{x^2} + {y^2}} }} \\\ \therefore{x^2} + {y^2} = \sqrt {{x^2} + {y^2}} - y.......................\left( {vii} \right) \\\ $$ **Therefore $$r = 1 - \sin \theta $$ in Cartesian form can be written as: $${x^2} + {y^2} = \sqrt {{x^2} + {y^2}} - y$$.** **Note:** We know that to convert a polar coordinate $\left( {r,\theta } \right)$ to a rectangular coordinate $\left( {x,y} \right)$, we can use the formula: $x = r\cos \theta \\\ \Rightarrow y = r\sin \theta $ In a similar manner convert rectangular coordinate $\left( {x,y} \right)$ to a polar coordinate $\left( {r,\theta } \right)$, we can use the formula: $r = \sqrt {\left( {{x^2} + {y^2}} \right)} \\\ \Rightarrow\theta = {\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right) $ Also while choosing $\theta $ it’s better to choose it in radians since when $\theta $ is in radians the calculations become much easier.